介绍了最小二乘支持向量机(Least Squares Support VectorMachines,LS-SVM)的数学基础和具体应用。用二次损失函数取代支持向量机中的不敏感损失函数,将不等式约束条件变为等式约束,从而将二次规划问题转变为线性方程组的求解,提高了运...介绍了最小二乘支持向量机(Least Squares Support VectorMachines,LS-SVM)的数学基础和具体应用。用二次损失函数取代支持向量机中的不敏感损失函数,将不等式约束条件变为等式约束,从而将二次规划问题转变为线性方程组的求解,提高了运算速度。并将其与偏最小二乘法、标准支持向量机进行了对比,结果表明,最小二乘支持向量机泛化能力更强,计算效率更高。展开更多
文摘介绍了最小二乘支持向量机(Least Squares Support VectorMachines,LS-SVM)的数学基础和具体应用。用二次损失函数取代支持向量机中的不敏感损失函数,将不等式约束条件变为等式约束,从而将二次规划问题转变为线性方程组的求解,提高了运算速度。并将其与偏最小二乘法、标准支持向量机进行了对比,结果表明,最小二乘支持向量机泛化能力更强,计算效率更高。