This paper presents a study on the concur- rent topology optimization of a structure and its material microstructure. A modified optimization model is proposed by introducing microstructure orientation angles as a new...This paper presents a study on the concur- rent topology optimization of a structure and its material microstructure. A modified optimization model is proposed by introducing microstructure orientation angles as a new type of design variable. The new model is based on the assumptions that a structure is made of a material with the same microstructure, and the material may have a different orientation within the design domain of the structure. The homogenization theory is applied to link the material and structure scales. An additional post-processing technique is developed for modifying the obtained design to avoid local optima caused by the use of orientation angle variables. Numerical examples are presented to illustrate the viabil- ity and effectiveness of the proposed model. It is found that significant improvement in structural performance can be achieved by optimizing the orientation of microstructures in concurrent topology optimization of structures and materials.展开更多
基金supported by the State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, China (Grant GZ1305)
文摘This paper presents a study on the concur- rent topology optimization of a structure and its material microstructure. A modified optimization model is proposed by introducing microstructure orientation angles as a new type of design variable. The new model is based on the assumptions that a structure is made of a material with the same microstructure, and the material may have a different orientation within the design domain of the structure. The homogenization theory is applied to link the material and structure scales. An additional post-processing technique is developed for modifying the obtained design to avoid local optima caused by the use of orientation angle variables. Numerical examples are presented to illustrate the viabil- ity and effectiveness of the proposed model. It is found that significant improvement in structural performance can be achieved by optimizing the orientation of microstructures in concurrent topology optimization of structures and materials.