Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual charac...Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.展开更多
Due to numerous obstacles such as complex matrices,real-time monitoring of complex reaction systems(e.g.,medicinal herb stewing system)has always been a challenge though great values for safe and rational use of drugs...Due to numerous obstacles such as complex matrices,real-time monitoring of complex reaction systems(e.g.,medicinal herb stewing system)has always been a challenge though great values for safe and rational use of drugs.Herein,facilitated by the potential ability on the tolerance of complex matrices of extractive electrospray ionization mass spectrometry,a device was established to realize continuous sampling and real-time quantitative analysis of herb stewing system for the first time.A complete analytical strategy,including data acquisition,data mining,and data evaluation was proposed and implemented with overcoming the usual difficulties in real-time mass spectrometry quantification.The complex Fuzi(the lateral root of Aconitum)-meat stewing systems were real-timely monitored in150 min by qualitative and quantitative analysis of the nine key alkaloids accurately.The results showed that the strategy worked perfectly and the toxicity of the systems were evaluated and predicated accordingly.Stewing with trotters effectively accelerated the detoxification of Fuzi soup and reduced the overall toxicity to 68%,which was recommended to be used practically for treating rheumatic arthritis and enhancing immunity.The established strategy was versatile,simple,and accurate,which would have a wide application prospect in real-time analysis and evaluation of various complex reaction systems.展开更多
Prediction of roadheader performance plays a significant role in the plan of tunnel construction, which is influenced by different key parameters, including rock strength, discontinuity in rock mass, type and specific...Prediction of roadheader performance plays a significant role in the plan of tunnel construction, which is influenced by different key parameters, including rock strength, discontinuity in rock mass, type and specifications of roadheader machine, and brittleness. The main aim of this study is to build a robust empirical equation based on rock mass properties for the roadheader performance prediction. For achieving the aim, a dataset composed of roadheader performance rate and rock properties is established using the dataset compiled from an underground coal mine located in a remote rugged desert environment some 85 km south of Tabas City in mid east Iran. By using gathered data, the statistical analyses are conducted between rock mass properties and roadheader performance to find whether there is a significant relationship between input variables and roadheader performance. The results show that rock mass properties have a considerable impact on the rate of the roadheader performance. It is demonstrated that the proposed model can accurately predict the roadheader performance as a function of rock mass properties.展开更多
The Blended-Wing-Body(BWB) is an unconventional configuration of aircraft and considered as a potential configuration for future commercial aircraft. One of the difficulties in conceptual design of a BWB aircraft is s...The Blended-Wing-Body(BWB) is an unconventional configuration of aircraft and considered as a potential configuration for future commercial aircraft. One of the difficulties in conceptual design of a BWB aircraft is structural mass prediction due to its unique structural feature. This paper presents a structural mass prediction method for conceptual design of BWB aircraft using a structure analysis and optimization method combined with empirical calibrations. The total BWB structural mass is divided into the ideal load-carrying structural mass, non-ideal mass, and secondary structural mass. Structural finite element analysis and optimization are used to predict the ideal primary structural mass, while the non-ideal mass and secondary structural mass are estimated by empirical methods. A BWB commercial aircraft is used to demonstrate the procedure of the BWB structural mass prediction method. The predicted mass of structural components of the BWB aircraft is presented, and the ratios of the structural component mass to the Maximum TakeOff Mass(MTOM) are discussed. It is found that the ratio of the fuselage mass to the MTOM for the BWB aircraft is much higher than that for a conventional commercial aircraft, and the ratio of the wing mass to the MTOM for the BWB aircraft is slightly lower than that for a conventional aircraft.展开更多
基金Project(50934006) supported by the National Natural Science Foundation of ChinaProject(2010CB732004) supported by the National Basic Research Program of China+1 种基金Project(2009ssxt230) supported by the Central South University Innovation Fund,ChinaProject(CX2011B119) supported by the Graduated Students’Research and Innovation Fund of Hunan Province,China
文摘Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.
基金supported by the National Natural Science Foundation of China(No.81603293)Young Elite Scientist Sponsorship Program by China Association for Science and Technology(No.CACM-2018-QNRC1-04,China)+1 种基金the Fundamental Research Funds for the Central Public Welfare Research Institutes(No.ZZ13-YQ-090,China)Key Project at Central Government Level:The ability establishment of sustainable use for valuable Chinese medicine resources(No.2060302,China)
文摘Due to numerous obstacles such as complex matrices,real-time monitoring of complex reaction systems(e.g.,medicinal herb stewing system)has always been a challenge though great values for safe and rational use of drugs.Herein,facilitated by the potential ability on the tolerance of complex matrices of extractive electrospray ionization mass spectrometry,a device was established to realize continuous sampling and real-time quantitative analysis of herb stewing system for the first time.A complete analytical strategy,including data acquisition,data mining,and data evaluation was proposed and implemented with overcoming the usual difficulties in real-time mass spectrometry quantification.The complex Fuzi(the lateral root of Aconitum)-meat stewing systems were real-timely monitored in150 min by qualitative and quantitative analysis of the nine key alkaloids accurately.The results showed that the strategy worked perfectly and the toxicity of the systems were evaluated and predicated accordingly.Stewing with trotters effectively accelerated the detoxification of Fuzi soup and reduced the overall toxicity to 68%,which was recommended to be used practically for treating rheumatic arthritis and enhancing immunity.The established strategy was versatile,simple,and accurate,which would have a wide application prospect in real-time analysis and evaluation of various complex reaction systems.
文摘Prediction of roadheader performance plays a significant role in the plan of tunnel construction, which is influenced by different key parameters, including rock strength, discontinuity in rock mass, type and specifications of roadheader machine, and brittleness. The main aim of this study is to build a robust empirical equation based on rock mass properties for the roadheader performance prediction. For achieving the aim, a dataset composed of roadheader performance rate and rock properties is established using the dataset compiled from an underground coal mine located in a remote rugged desert environment some 85 km south of Tabas City in mid east Iran. By using gathered data, the statistical analyses are conducted between rock mass properties and roadheader performance to find whether there is a significant relationship between input variables and roadheader performance. The results show that rock mass properties have a considerable impact on the rate of the roadheader performance. It is demonstrated that the proposed model can accurately predict the roadheader performance as a function of rock mass properties.
基金supported by the National Natural Science Foundation of China (No. 11432007)
文摘The Blended-Wing-Body(BWB) is an unconventional configuration of aircraft and considered as a potential configuration for future commercial aircraft. One of the difficulties in conceptual design of a BWB aircraft is structural mass prediction due to its unique structural feature. This paper presents a structural mass prediction method for conceptual design of BWB aircraft using a structure analysis and optimization method combined with empirical calibrations. The total BWB structural mass is divided into the ideal load-carrying structural mass, non-ideal mass, and secondary structural mass. Structural finite element analysis and optimization are used to predict the ideal primary structural mass, while the non-ideal mass and secondary structural mass are estimated by empirical methods. A BWB commercial aircraft is used to demonstrate the procedure of the BWB structural mass prediction method. The predicted mass of structural components of the BWB aircraft is presented, and the ratios of the structural component mass to the Maximum TakeOff Mass(MTOM) are discussed. It is found that the ratio of the fuselage mass to the MTOM for the BWB aircraft is much higher than that for a conventional commercial aircraft, and the ratio of the wing mass to the MTOM for the BWB aircraft is slightly lower than that for a conventional aircraft.