The Mesoproterozoic Wumishan Formation in the Jixian section of Tianjin is a succession of 3300-m-thick carbonate strata formed in a period of about 100 Ma (1310±20 Ma-1207±10 Ma). In this succession of stra...The Mesoproterozoic Wumishan Formation in the Jixian section of Tianjin is a succession of 3300-m-thick carbonate strata formed in a period of about 100 Ma (1310±20 Ma-1207±10 Ma). In this succession of strata, the carbonate metre-scale cyclic sequences belonging to peritidal type with an approximately symmetrical lithofacies-succession are best developed. The wide development of 1:4 stacking patterns shows that these metre-scale cyclic sequences are genetically related to the short-eccentricity cycles, which are called the Wumishan cyclothems that could truly represent sedimentary cycles. Generally, massive and thick-bedded calcareous dolomites and dolomitic limestones of stromatolite biostromes and thrombolite bioherms constitute the central part of the Wumishan cyclothems. The lower and upper parts consist of tidal flat dolostones, sandy-muddy dolostone and the top part is composed of lagoonal facies dolomitic shales with a paleosol cap. Therefore, an approximately symmetrical lithofacies-succession is formed. Many features such as the clear deepening and shoaling vectors of cyclothems, and all kinds of marks of fresh-water diagenesis indicate that the Wumishan cyclothems are the product of autocyclic sedimentation governed by allocyclic high-frequency sea-level changes. The results of a Markov chain analysis reaffirm the existence of the lithofacies-succession model of the Wumishan cyclothems. The boundaries of the Wumishan cyclothems are marked by the instantaneous exposed punctuated surface, which leads to the discrepancy between the cyclothems and the parasequences of the sequence stratigraphy terminology system. It is difficult to form a judgment that the time span of the Milankovitch cycles in the Precambrian is certainly equal to that of the Phanerozoic, but the regularly vertical stacking patterns of the seventh-order rhythms, sixth-order cyclothems and fifth-order parasequence sets still indicate their consistency with the duration of the Milankovitch cycles in the Phanerozoic.展开更多
The succession of lithofacies of a part of the Barakar Formation of the Singrauli coalfield has been studied by statistical techniques. The lithologies have been grouped under five facies states viz. coarse-, medium-,...The succession of lithofacies of a part of the Barakar Formation of the Singrauli coalfield has been studied by statistical techniques. The lithologies have been grouped under five facies states viz. coarse-, medium-, and fine-grained sandstones, shale and coal for statistical analyses. Markov chain analysis indicates the arrangement of Barakar lithofacies in the form of fining-upward cycles. A complete cycle consists of conglomerate or coarse-grained sandstone at the base sequentially succeeded by medium- and fine-grained sandstones, shales and coal seam at the top. The entropy analysis puts the Barakar cycles in A-4 type of cyclicity, which consists of different proportions of lower-, side- and upper-truncated cycles of lithologic states. Regression analysis indicates a sympathetic relationship between total thickness of strata (net subsidence) and number of coal cycles and an antipathic relationship between average thickness and number of coal cycles. The cyclic sedimentation of the Barakar Formation was controlled by autocyclic process, which occurred due to the lateral migration of streams triggered by intrabasinal differential subsidence. In many instances, the clastic sediments issued from the laterally migrating rivers interrupted the sedimentation resulting in thinner cycles in areas where the numbers of cycles are more. Principal component and multivariate regression analyses suggest that the net subsidence of the basin is mostly controlled by number and thickness of sandstone beds and coal seams.展开更多
In order to make a rational prediction of the Dead Sea shape, data were prepared for suitability map creation using Markov Chain analysis and Multi Criteria Evaluation (MCE). Then, Markov Cellular Automata model and s...In order to make a rational prediction of the Dead Sea shape, data were prepared for suitability map creation using Markov Chain analysis and Multi Criteria Evaluation (MCE). Then, Markov Cellular Automata model and spatial statistics were used in prediction and validation processes. The validation process shows a standard Kappa index of 0.9545 which means a strong relation between the model and reality. The predicted shapes of years 2020, 2030 and 2040 follow the same conditions from 1984 to 2010. The predicted areas of 2020, 2030 and 2040 are 610, 591 and 574 km2 which are considered a logical extension of the trend from 1984 till 2010. This study can be used as an environmental alert in order to keep the Dead Sea alive. Moreover, Markov-Cellular Automata model can be used to predict closed seas as the Dead Sea from remote sensed data.展开更多
文摘The Mesoproterozoic Wumishan Formation in the Jixian section of Tianjin is a succession of 3300-m-thick carbonate strata formed in a period of about 100 Ma (1310±20 Ma-1207±10 Ma). In this succession of strata, the carbonate metre-scale cyclic sequences belonging to peritidal type with an approximately symmetrical lithofacies-succession are best developed. The wide development of 1:4 stacking patterns shows that these metre-scale cyclic sequences are genetically related to the short-eccentricity cycles, which are called the Wumishan cyclothems that could truly represent sedimentary cycles. Generally, massive and thick-bedded calcareous dolomites and dolomitic limestones of stromatolite biostromes and thrombolite bioherms constitute the central part of the Wumishan cyclothems. The lower and upper parts consist of tidal flat dolostones, sandy-muddy dolostone and the top part is composed of lagoonal facies dolomitic shales with a paleosol cap. Therefore, an approximately symmetrical lithofacies-succession is formed. Many features such as the clear deepening and shoaling vectors of cyclothems, and all kinds of marks of fresh-water diagenesis indicate that the Wumishan cyclothems are the product of autocyclic sedimentation governed by allocyclic high-frequency sea-level changes. The results of a Markov chain analysis reaffirm the existence of the lithofacies-succession model of the Wumishan cyclothems. The boundaries of the Wumishan cyclothems are marked by the instantaneous exposed punctuated surface, which leads to the discrepancy between the cyclothems and the parasequences of the sequence stratigraphy terminology system. It is difficult to form a judgment that the time span of the Milankovitch cycles in the Precambrian is certainly equal to that of the Phanerozoic, but the regularly vertical stacking patterns of the seventh-order rhythms, sixth-order cyclothems and fifth-order parasequence sets still indicate their consistency with the duration of the Milankovitch cycles in the Phanerozoic.
文摘The succession of lithofacies of a part of the Barakar Formation of the Singrauli coalfield has been studied by statistical techniques. The lithologies have been grouped under five facies states viz. coarse-, medium-, and fine-grained sandstones, shale and coal for statistical analyses. Markov chain analysis indicates the arrangement of Barakar lithofacies in the form of fining-upward cycles. A complete cycle consists of conglomerate or coarse-grained sandstone at the base sequentially succeeded by medium- and fine-grained sandstones, shales and coal seam at the top. The entropy analysis puts the Barakar cycles in A-4 type of cyclicity, which consists of different proportions of lower-, side- and upper-truncated cycles of lithologic states. Regression analysis indicates a sympathetic relationship between total thickness of strata (net subsidence) and number of coal cycles and an antipathic relationship between average thickness and number of coal cycles. The cyclic sedimentation of the Barakar Formation was controlled by autocyclic process, which occurred due to the lateral migration of streams triggered by intrabasinal differential subsidence. In many instances, the clastic sediments issued from the laterally migrating rivers interrupted the sedimentation resulting in thinner cycles in areas where the numbers of cycles are more. Principal component and multivariate regression analyses suggest that the net subsidence of the basin is mostly controlled by number and thickness of sandstone beds and coal seams.
文摘In order to make a rational prediction of the Dead Sea shape, data were prepared for suitability map creation using Markov Chain analysis and Multi Criteria Evaluation (MCE). Then, Markov Cellular Automata model and spatial statistics were used in prediction and validation processes. The validation process shows a standard Kappa index of 0.9545 which means a strong relation between the model and reality. The predicted shapes of years 2020, 2030 and 2040 follow the same conditions from 1984 to 2010. The predicted areas of 2020, 2030 and 2040 are 610, 591 and 574 km2 which are considered a logical extension of the trend from 1984 till 2010. This study can be used as an environmental alert in order to keep the Dead Sea alive. Moreover, Markov-Cellular Automata model can be used to predict closed seas as the Dead Sea from remote sensed data.