假定随机误差分布来自具有重尾特征的scale mixtures of normal分布族,运用贝叶斯方法研究了函数型线性回归模型的稳健性估计,其中模型的响应变量为标量,解释变量为函数型变量.数值模拟结果表明:当响应变量的观测数据存在离群值时,建立...假定随机误差分布来自具有重尾特征的scale mixtures of normal分布族,运用贝叶斯方法研究了函数型线性回归模型的稳健性估计,其中模型的响应变量为标量,解释变量为函数型变量.数值模拟结果表明:当响应变量的观测数据存在离群值时,建立的方法得到的模型参数的估计,要优于正态分布假定下的模型参数的估计.展开更多
文摘假定随机误差分布来自具有重尾特征的scale mixtures of normal分布族,运用贝叶斯方法研究了函数型线性回归模型的稳健性估计,其中模型的响应变量为标量,解释变量为函数型变量.数值模拟结果表明:当响应变量的观测数据存在离群值时,建立的方法得到的模型参数的估计,要优于正态分布假定下的模型参数的估计.