期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Introgression the Salinity Tolerance QTLs <i>Saltol</i>into AS996, the Elite Rice Variety of Vietnam 被引量:4
1
作者 Luu T. N. Huyen Luu M. Cuc +1 位作者 Abdelbagi M. Ismail Le H. Ham 《American Journal of Plant Sciences》 2012年第7期981-987,共7页
This study focus on developing new salinity tolerance and high yielding rice lines, using markers assisted backrossing (MABC). Total of 500 SSR markers on 12 rice chromosomes were screened for parental polymorphic mar... This study focus on developing new salinity tolerance and high yielding rice lines, using markers assisted backrossing (MABC). Total of 500 SSR markers on 12 rice chromosomes were screened for parental polymorphic markers. Of which, 52 primers in the Saltol region were checked with the two parents varieties to identify polymorphic primers for screening the Saltol region of the breeding populations. For each backcross generation of ASS996/FL478, approx. 500 plants were screened with 63 polymorphic markers distributed on 12 chromosomes. The two BC1F1 plants P284 and P307 which had the highest recipient alleles up to 89.06% and 86.36%, were chosen for the next backcrossing. Three BC2F1 plants with the recipient alleles up to 94.03% and 93.18% were used to develop BC3F1 generation. The best BC3F1 plant was P284-112-209 with all the recipient alleles and Saltol region. The four plants P307-305-21, P284-112-195, P284-112-198, P284-112-213 were the second ranking with only one loci heterozygous (applied 63 markers covered on 12 chromosomes). These five plants were chosen as the breeding lines for result of Saltol-AS996 introgression. The breeding line BC4F1 having 100% genetic background of donor variety is ready for develop new salinity tolerant variety ASS996-Saltol to cope with climate change. 展开更多
关键词 marker assisted backcrossing Rice Variety AS996 Salinity Tolerance-Saltol QTLS
下载PDF
Introgression of Gene for Non-Pollen Type Thermo-Sensitive Genic Male Sterility to Thai Rice Cultivars
2
作者 TANEE Sreewongchai WEERACHAI Matthayatthaworn +1 位作者 CHALERMPOL Phumichai PRAPA Sripichitt 《Rice science》 SCIE 2014年第2期123-126,共4页
For the two-line hybrid rice system, pol en sterility is regulated by recessive gene that responds to temperature. The recessive gene controlling thermo-sensitive genetic male sterility (TGMS) is expressed when the ... For the two-line hybrid rice system, pol en sterility is regulated by recessive gene that responds to temperature. The recessive gene controlling thermo-sensitive genetic male sterility (TGMS) is expressed when the plants are grown in conditions with higher or lower critical temperatures. To transfer tgms gene(s) control ing TGMS to Thai rice cultivars by backcross breeding method, a male sterile line was used as a donor parent while Thai rice cultivars ChaiNat 1, PathumThani 1, and SuphanBuri 1 were used as recurrent parents. The BC2F2 lines were developed from backcrossing and selfing. Moreover, the simple sequence repeat (SSR) markers were developed for identifying tgms gene and the linked marker was used for assisting selection in backcrossing. The identification lines were confirmed by pol en observation. The results showed the success of introgression of the tgms gene into Thai rice cultivars. These lines will be tested for combining ability and used as female parent in hybrid rice production in Thailand. 展开更多
关键词 hybrid rice thermo-sensitive genic male sterility non-pollen type molecular marker markerassisted selection marker assisted backcrossing
下载PDF
Improvement of three popular Indian groundnut varieties for foliar disease resistance and high oleic acid using SSR markers and SNP array in marker-assisted backcrossing 被引量:1
3
作者 Yaduru Shasidhar Murali T.Variath +10 位作者 Manish K.Vishwakarma Surendra S.Manohar Sunil S.Gangurde Manda Sriswathi Hari Kishan Sudini Keshavji L.Dobariya Sandip K.Bera Thankappan Radhakrishnan Manish K.Pandey Pasupuleti Janila Rajeev K.Varshney 《The Crop Journal》 SCIE CAS CSCD 2020年第1期1-15,共15页
Foliar fungal diseases(rust and late leaf spot)incur large yield losses,in addition to the deterioration of fodder quality in groundnut worldwide.High oleic acid has emerged as a key market trait in groundnut,as it in... Foliar fungal diseases(rust and late leaf spot)incur large yield losses,in addition to the deterioration of fodder quality in groundnut worldwide.High oleic acid has emerged as a key market trait in groundnut,as it increases the shelf life of the produce/products in addition to providing health benefits to consumers.Marker-assisted backcrossing(MABC)is the most successful approach to introgressing or pyramiding one or more traits using traitlinked markers.We used MABC to improve three popular Indian cultivars(GJG 9,GG 20,and GJGHPS 1)for foliar disease resistance(FDR)and high oleic acid content.A total of 22 BC3F4 and 30 BC2F4 introgression lines(ILs)for FDR and 46 BC3F4 and 41 BC2F4 ILs for high oleic acid were developed.Recurrent parent genome analysis using the 58 K Axiom_Arachis array identified several lines showing upto 94%of genome recovery among second and third backcross progenies.Phenotyping of these ILs revealed FDR scores comparable to the resistant parent,GPBD 4,and ILs with high(~80%)oleic acid in addition to high genome recovery.These ILs provide further opportunities for pyramiding FDR and high oleic acid in all three genetic backgrounds as well as for conducting multi-location yield trials for further evaluation and release for cultivation in target regions of India. 展开更多
关键词 Foliar disease resistance High oleic acid Late leaf spot marker-assisted backcrossing SNP array Background genome recovery
下载PDF
Development of New Submergence Tolerant Rice Variety for Bangladesh Using Marker-Assisted Backcrossing
4
作者 Khandakar Md IFTEKHARUDDAULA Helal Uddin AHMED +3 位作者 Sharmistha GHOSAL Zakiah Rahman MONI Al AMIN Md Shamsher ALI 《Rice science》 SCIE CSCD 2015年第1期16-26,共11页
Submergence tolerant high yielding rice variety was developed using BR11 as a recipient parent applying foreground, phenotypic and background selection approaches. Recombinant selection was found essential to minimize... Submergence tolerant high yielding rice variety was developed using BR11 as a recipient parent applying foreground, phenotypic and background selection approaches. Recombinant selection was found essential to minimize linkage drag by BC2F2 generation. Without recombinant selection, the introgression size in the backcross recombinant lines (BRLs) was approximately 15 Mb on the carrier chromosome. The BRLs were found submergence tolerance compared to the check varieties under complete submergence for two weeks at Bangladesh Rice Research Institute, and produced higher yield compared to the isogenic Subl-line under controlled submerged condition. The BRL IR85260-66-654-Gaz2 was released as BRRI dhan52 in 2010, which was the first high yielding submergence tolerant variety in Bangladesh. BRRI dhan52 produced grain yield ranging from 4.2 to 5.2 t/hm2 under different flash flood prone areas of Bangladesh in three consecutive seasons. The study demonstrated the efficiency of recombinant selection and better adaptability of the newly released submergence tolerant high yielding variety in flash flood prone different areas of the country with respect to submergence tolerance and yield potential. 展开更多
关键词 backcross recombinant line marker-assisted backcrossing recombinant selection rice submergence tolerance
下载PDF
Application of Marker Assisted Backcrossing to Introgress the Submergence Tolerance QTL <i>SUB</i>1 into the Vietnam Elite Rice Variety-AS996
5
作者 Luu M. Cuc Luu T. N. Huyen +6 位作者 Pham T. M. Hien Vu T. T. Hang Nguyen Q. Dam Pham T. Mui Vu D. Quang Abdelbagi M. Ismail Le H. Ham 《American Journal of Plant Sciences》 2012年第4期528-536,共9页
The result of the study contributes to enhancing and sustaining future livelihoods and food security in Vietnam vis-a-vis climate change. An innovative strategy based on marker-assisted backcrossing (MABC) was used to... The result of the study contributes to enhancing and sustaining future livelihoods and food security in Vietnam vis-a-vis climate change. An innovative strategy based on marker-assisted backcrossing (MABC) was used to transform popular rice variety AS996 into the one can tolerate submergence while maintaining its original characteristics preferred by farmers and consumers. The submergence tolerance QTL SUB1 counts for up to 70% of the submergence tolerant and provides a marked improvement of submergence tolerance in all genetic backgrounds and environments tested so far. Parental diversity was carried out with 460 markers. Of which, 53 polymorphic markers were used for assessment on BC1F1, BC2F1 and BC3F1 generations. The best BC1F1 plant was P422 with highest recipient allele was 87.5%, while the additional chosen plants were P412, P428, P215 and P39 (81% - 84%). All these plants were used to develop BC2F1 generation. The six BC2F1 plants were used to develop BC3F1 and BC2F2 were the plants number P422-11 and P422-14 having 93.75% recipient alleles and P422-12, P422-3, P39-17, P39-25 having 92.25% recipient alleles. Total of 445 BC3F1 plants were confirmed the introgresion of SUB1 using ART5 and SC3. After three generations of backcrossing, application of MABC resulted in the best BC3F1 individual P422-14-177 with 100% of recipient alleles based on the number of 53 markers used with only the introgression size of SUB1 was 0.3Mb between ART5 and SC3. Phenotyping was carried out on BC3F1 and BC2F2 of the selected lines. The survival ratio of these selected lines and IR64SUB1 were the same. It convinced the successfully introgress SUB1 into AS996 rice variety. The breeding line BC4F1 having 100% genetic background of donor variety is ready for develop new submergence tolerant rice variety ASS996-SUB1 to cope with climate change. 展开更多
关键词 AS996-SUB1 Climate Change marker-assisted backcrossing (MABC) Rice SUBMERGENCE
下载PDF
Use of Major Quantitative Trait Loci to Improve Grain Yield of Rice 被引量:8
6
作者 GUO Long-biao YE Guo-you 《Rice science》 SCIE 2014年第2期65-82,共18页
Further improvement of rice productivity remains a challenge. Breeding is perceived as an important option to increase rice yield. However, the genetic progress of grain yield in most rice breeding programs was slow i... Further improvement of rice productivity remains a challenge. Breeding is perceived as an important option to increase rice yield. However, the genetic progress of grain yield in most rice breeding programs was slow in the last decades. Although great progress in rice genomics and molecular biology has been achieved, the effect of such technological innovations on rice breeding is far small. Marker-assisted selection (MAS) for a few target quantitative trait loci (QTLs) has significant effects in improving qualitative traits, such as disease resistance. The success of MAS has therefore motivated breeders to identify and use major QTLs for yield and yield component traits. In this review, we summarized the recent methods in QTL identification, including novel statistical methods for linkage and association mapping, special population types, and whole-genome sequencing. We reviewed the successful application of marker-assisted gene introgression and gene pyramiding to improve grain yield and discussed the design of efficient MAS schemes to further increase the success rate of breeding programs. The use of well-characterized major QTLs through introgression and gene pyramiding is proven effective in improving grain yield, particularly yield under abiotic stress. Major QTLs that are stable across genetic background and growing environments are often found in less adapted germplasms, such as landraces and wild relatives. Advanced backcross QTL analysis and introgression lines, which integrate QTL discovery and utilization, are important methods for exploiting major QTLs contained in such germplasms. Next-generation sequencing substantially increases mapping resolution and accelerates the identification of casual genes underlying major QTLs. Practical guidelines derived from theoretical and empirical studies are given to guide the design of efficient marker-assisted gene introgression and pyramiding schemes. 展开更多
关键词 gene pyramiding marker-assisted backcross marker-assisted selection RICE YIELD
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部