A severe accident in a marine nuclear reactor leads to radionuclide leakage,which causes hidden dangers to workers and has adverse effects of environmental pollution.It is necessary to propose a novel approach to radi...A severe accident in a marine nuclear reactor leads to radionuclide leakage,which causes hidden dangers to workers and has adverse effects of environmental pollution.It is necessary to propose a novel approach to radionuclide diffusion in a confined environment after a severe accident in a marine nuclear reactor.Therefore,this study proposes a new method for the severe accident analysis program MELCOR coupled with computational fluid dynamics scSTREAM to study radioactive diffusion in severe accidents.The radionuclide release fraction and temperature calculated by MELCOR were combined with the scSTREAM calculations to study the radionuclide diffusion behavior and the phenomenon of radionuclide diffusion in different space environments of the reactor under the conditions of varying wind velocities of the ventilation system and diffusion speed.The results show that the wind velocity of the ventilation system is very small or zero,and the turbulent diffusion of radionuclides is not obvious and diffuses slowly in the form of condensation sedimentation and gravity settlement.When the wind speed of the ventilation system increases,the flow of radionuclides meets the wall and forms eddy currents,affecting the time variation of radionuclides diffusing into chamber 2.The wind velocity of the ventilation system and the diffusion speed has opposite effects on the time variation trend of radionuclide diffusion into the four chambers.展开更多
基金supported by the Postgraduate Scientific Research Innovation Project of Hunan Province (No. CX20210922)
文摘A severe accident in a marine nuclear reactor leads to radionuclide leakage,which causes hidden dangers to workers and has adverse effects of environmental pollution.It is necessary to propose a novel approach to radionuclide diffusion in a confined environment after a severe accident in a marine nuclear reactor.Therefore,this study proposes a new method for the severe accident analysis program MELCOR coupled with computational fluid dynamics scSTREAM to study radioactive diffusion in severe accidents.The radionuclide release fraction and temperature calculated by MELCOR were combined with the scSTREAM calculations to study the radionuclide diffusion behavior and the phenomenon of radionuclide diffusion in different space environments of the reactor under the conditions of varying wind velocities of the ventilation system and diffusion speed.The results show that the wind velocity of the ventilation system is very small or zero,and the turbulent diffusion of radionuclides is not obvious and diffuses slowly in the form of condensation sedimentation and gravity settlement.When the wind speed of the ventilation system increases,the flow of radionuclides meets the wall and forms eddy currents,affecting the time variation of radionuclides diffusing into chamber 2.The wind velocity of the ventilation system and the diffusion speed has opposite effects on the time variation trend of radionuclide diffusion into the four chambers.