期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
一种基于自适应模糊支配的高维多目标粒子群算法 被引量:24
1
作者 余伟伟 谢承旺 +5 位作者 闭应洲 夏学文 李雄 任柯燕 赵怀瑞 王少锋 《自动化学报》 EI CSCD 北大核心 2018年第12期2278-2289,共12页
高维多目标优化问题由于具有巨大的目标空间使得一些经典的多目标优化算法面临挑战.提出一种基于自适应模糊支配的高维多目标粒子群算法MAPSOAF,该算法定义了一种自适应的模糊支配关系,通过对模糊支配的阈值自适应变化若干步长,在加强... 高维多目标优化问题由于具有巨大的目标空间使得一些经典的多目标优化算法面临挑战.提出一种基于自适应模糊支配的高维多目标粒子群算法MAPSOAF,该算法定义了一种自适应的模糊支配关系,通过对模糊支配的阈值自适应变化若干步长,在加强个体间支配能力的同时实现对种群选择压力的精细化控制,以改善算法的收敛性;其次,通过从外部档案集中选取扰动粒子,并在粒子速度更新公式中新增一扰动项以克服粒子群早熟收敛并改善个体分布的均匀性;另外,算法利用简化的Harmonic归一化距离评估个体的密度,在改善种群分布性的同时降低算法的计算代价.该算法与另外五种高性能的多目标进化算法在标准测试函数集DTLZ{1, 2, 4, 5}上进行对比实验,结果表明该算法在收敛性和多样性方面总体上具有较显著的性能优势. 展开更多
关键词 自适应模糊支配 精英个体扰动 粒子群算法 高维多目标优化问题 高维多目标粒子群优化算法
下载PDF
利用冲突信息降维的进化高维目标优化算法 被引量:10
2
作者 罗乃丽 李霞 王娜 《信号处理》 CSCD 北大核心 2017年第9期1169-1178,共10页
进化多目标优化算法求解高维目标优化问题面临收敛能力、计算复杂度、决策以及Pareto前沿的可视化等困难,其根本原因是目标空间维数高。目标降维通过丢弃冗余目标,为缓解高维目标优化求解困难提供一种新思路。本文提出利用冲突信息降维... 进化多目标优化算法求解高维目标优化问题面临收敛能力、计算复杂度、决策以及Pareto前沿的可视化等困难,其根本原因是目标空间维数高。目标降维通过丢弃冗余目标,为缓解高维目标优化求解困难提供一种新思路。本文提出利用冲突信息降维的分解进化高维目标优化算法(CIOR-MOEA/D)。该方法通过衡量目标在近似解集上体现的冲突性,构造问题的冲突信息矩阵,对该矩阵进行特征分析,确定目标的重要性程度,实现维数约简,并利用分解进化多目标优化算法(MOEA/D)对重要子目标集合进行分解进化,从而得到问题的近似解集。实验结果表明,本文提出的目标降维算法在降维的准确性与鲁棒性上均表现突出,能够有效地处理冗余高维目标优化问题。 展开更多
关键词 多目标进化算法 高维目标优化问题 目标降维 冲突信息
下载PDF
基于类圆映射的高维多目标可视化方法 被引量:7
3
作者 黎明 黄珊 +1 位作者 陈昊 李军华 《电子学报》 EI CAS CSCD 北大核心 2019年第6期1185-1193,共9页
可视化技术有利于对高维多目标优化问题求解所得的解集进行评价与分析,但是现有的高维多目标可视化方法无法有效保持解集的 Pareto支配关系、前沿密度分布及形状。针对以上问题,本文提出类圆映射可视化方法.首先将多目标按相关性均匀排... 可视化技术有利于对高维多目标优化问题求解所得的解集进行评价与分析,但是现有的高维多目标可视化方法无法有效保持解集的 Pareto支配关系、前沿密度分布及形状。针对以上问题,本文提出类圆映射可视化方法.首先将多目标按相关性均匀排列在单位圆圆弧上,根据适应度函数值将解集映射为类圆空间内的一个多边形,并通过多边形的几何中心和面积对解集进行 3维可视化.在此基础上对类圆支配与均衡性进行了定义,并对类圆映射下的支配关系、映射遮挡等进行了理论分析与证明.与平行坐标系、主成分分析方法和径向可视化方法相比表明,本文方法能保持解集 Pareto支配关系,并能反映解集在原始空间的密度分布和形状。此外,还能有效避免解集映射点遮档.其有利于决策者进行可视化评价和选择高维多目标解集. 展开更多
关键词 多目标优化问题 可视化技术 高维多目标可视化 类圆映射 PARETO支配 Pareto前沿形状
下载PDF
MaOEA/A2R:一种基于A2R支配关系的高维多目标进化算法
4
作者 谢承旺 付世炜 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2758-2772,共15页
传统的Pareto支配关系在高维目标空间存在固有缺陷,而一些改进的支配方法在平衡高维目标解群的收敛性与多样性上尚有提升空间.基于此,提出一种参考向量关联区域(小生境)自动缩减的支配关系A2R(dominance relation based on the Automati... 传统的Pareto支配关系在高维目标空间存在固有缺陷,而一些改进的支配方法在平衡高维目标解群的收敛性与多样性上尚有提升空间.基于此,提出一种参考向量关联区域(小生境)自动缩减的支配关系A2R(dominance relation based on the Automatically reduced region Associated with the Reference vector).该支配方法在进化全过程中逐代缩减小生境规模,从而实现收敛性与多样性自动平衡,而且不引入额外参数.另外,提出利用基于L_(p)-范式(p=1/M,M为目标数)的拥挤距离度量高维目标解群的多样性.将上述两种策略嵌入到经典的NSGA-II(Nondominated Sorting Genetic Algorithm II)框架,设计一种基于A2R支配关系的高维多目标进化算法MaOEA/A2R(Many-Objective Evolutionary Algorithm base on A2R).该算法与其他5种代表性的高维多目标进化算法一同在5-、10-、15-和20-目标的DTLZ(benchmark MOP proposed by Deb,Thiele,Lau-manns,and Zitzler)和WFG(benchmark MOP pro-posed by Walking Fish Group)基准测试问题上进行IGD(Inverted Generational Distance)和HV(Hyper Volume)性能测试.结果表明,MaOEA/A2R算法总体上具有较好的收敛性和多样性.由此表明,MaOEA/A2R是一种颇具前景的高维多目标进化算法. 展开更多
关键词 进化算法 高维多目标优化问题 改进支配关系 高维多目标进化算法
下载PDF
MaOEA/d^(2):一种基于双距离构造的高维多目标进化算法 被引量:2
5
作者 谢承旺 郭华 +1 位作者 韦伟 姜磊 《软件学报》 EI CSCD 北大核心 2023年第4期1523-1542,共20页
传统的基于Pareto支配关系的多目标进化算法(MOEA)难以有效求解高维多目标优化问题(MaOP).提出一种利用PBI效用函数的双距离构造的支配关系,且无需引入额外的参数.其次,利用双距离定义了一种多样性保持方法,该方法不仅考虑了解个体的双... 传统的基于Pareto支配关系的多目标进化算法(MOEA)难以有效求解高维多目标优化问题(MaOP).提出一种利用PBI效用函数的双距离构造的支配关系,且无需引入额外的参数.其次,利用双距离定义了一种多样性保持方法,该方法不仅考虑了解个体的双距离,而且还可以根据优化问题的目标数目自适应地调整多样性占比,以较好地平衡高维目标解群的收敛性和多样性.最后,将基于双距离构造的支配关系和多样性保持方法嵌入到NSGA-II算法框架中,设计了一种基于双距离的高维多目标进化算法MaOEA/d^(2).该算法与其他5种代表性的高维多目标进化算法一同在5-、10-、15-和20-目标的DTLZ和WFG基准测试问题上进行了IGD和HV性能测试,结果表明,Ma OEA/d^(2)算法具有较好的收敛性和多样性.由此表明,Ma OEA/d^(2)算法是一种颇具前景的高维多目标进化算法. 展开更多
关键词 进化算法 高维多目标优化问题 多样性 收敛性 高维多目标进化算法
下载PDF
新的混合分解高维多目标进化算法 被引量:2
6
作者 过晓芳 王宇平 代才 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第7期1313-1321,共9页
在基于分解技术求解高维多目标优化问题的思想启发下,为了提高多目标优化问题非支配解集合的分布性和收敛性,提出新的基于个体支配关系的混合分解高维多目标进化算法.该算法采用分子种群的进化模式,设计新的基于有效阶的个体支配关系用... 在基于分解技术求解高维多目标优化问题的思想启发下,为了提高多目标优化问题非支配解集合的分布性和收敛性,提出新的基于个体支配关系的混合分解高维多目标进化算法.该算法采用分子种群的进化模式,设计新的基于有效阶的个体支配关系用于个体的比较和更新操作,以便在增加个体选择压力的同时提高解集分布的多样性.为了改善该算法的局部搜索性能,将Powell搜索作为局部搜索算子,采用传统优化与进化算法相融合的混合进化策略.为了检验提出算法的性能,将提出算法用于求解5~20个目标的6类标准测试问题,与同类算法相比,该算法在收敛性和分布性方面均具有较大的改进和提高. 展开更多
关键词 多目标优化问题 进化算法 分子种群 个体支配关系
下载PDF
基于近似边界和层次聚类的超多目标进化算法 被引量:1
7
作者 张峰 顾一凡 《计算机技术与发展》 2020年第12期61-65,共5页
很多工程优化问题需要同时优化超过3个冲突的目标,这类问题就属于超多目标优化问题。由于超多目标优化问题的目标空间过于庞大,并且很多算法往往只能使用数量较少的种群来近似问题的结果,这使得很多算法难以保持较好的多样性和收敛性,此... 很多工程优化问题需要同时优化超过3个冲突的目标,这类问题就属于超多目标优化问题。由于超多目标优化问题的目标空间过于庞大,并且很多算法往往只能使用数量较少的种群来近似问题的结果,这使得很多算法难以保持较好的多样性和收敛性,此外,许多算法往往忽略使用极值点的有效信息来加速算法收敛。为了解决上述问题,提出了一种基于近似边界和层次聚类的超多目标进化算法。在一种求角点解方法的基础上,使用角点解近似边界(极值点)来加速算法收敛,并进一步提出使用层次聚类来挑选下一代种群,借此使得算法能够保持较好的收敛性和多样性。最后通过与多个流行的求解超多目标优化问题算法进行对比实验,证明了该算法的有效性。 展开更多
关键词 超多目标优化问题 极值点 超多目标进化算法 角点解 层次聚类
下载PDF
基于遗传算法的反应堆三维屏蔽结构高维多目标优化方法研究
8
作者 张华健 陈珍平 +5 位作者 刘程伟 杨超 谭波 甘斌 陈富财 于涛 《核技术》 CAS CSCD 北大核心 2022年第11期99-109,共11页
辐射屏蔽设计是反应堆设计的重要组成,面向陆海空天全域的新型核动力技术的发展对辐射屏蔽优化设计方法提出了新需求。采用传统屏蔽结构多目标优化方法处理三维屏蔽结构优化问题时,存在寻优速度慢、难以收敛、全局性差等缺陷,基于第三... 辐射屏蔽设计是反应堆设计的重要组成,面向陆海空天全域的新型核动力技术的发展对辐射屏蔽优化设计方法提出了新需求。采用传统屏蔽结构多目标优化方法处理三维屏蔽结构优化问题时,存在寻优速度慢、难以收敛、全局性差等缺陷,基于第三代非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm Ⅲ,NSGA-Ⅲ),开展面向三维屏蔽结构设计的高维多目标优化方法研究。基于核反应堆三维屏蔽结构模型,以屏蔽层重量、体积和特定区域辐射剂量率为优化目标,开展NSGA-Ⅲ优化方法的性能对比分析研究。数值结果表明:本文建立的高维多目标优化方法可更高效、稳定地搜寻Pareto前沿解,可为辐射屏蔽设计优化提供新思路。 展开更多
关键词 辐射屏蔽 NSGA-Ⅲ 高维多目标问题 屏蔽结构优化 核反应堆
原文传递
基于超球形模糊支配的高维多目标粒子群优化算法 被引量:7
9
作者 谭阳 唐德权 曹守富 《计算机应用》 CSCD 北大核心 2019年第11期3233-3241,共9页
高维多目标优化问题(MAOP)会随着待优化问题维度的增加形成巨大的目标空间,导致在目标空间中非支配解的比例急剧增加,削弱了进化算法的选择压力,降低了进化算法对MAOP的求解效率。针对这一问题,提出一种以超球型支配关系降低种群中非支... 高维多目标优化问题(MAOP)会随着待优化问题维度的增加形成巨大的目标空间,导致在目标空间中非支配解的比例急剧增加,削弱了进化算法的选择压力,降低了进化算法对MAOP的求解效率。针对这一问题,提出一种以超球型支配关系降低种群中非支配解数量的粒子群优化(PSO)算法。算法以模糊支配策略来维持种群对MAOP的选择压力,并通过全局极值的选择和外部档案的维护来保持种群个体在目标空间中的分布。在标准测试集DTLZ和WFG上的仿真结果表明,所提算法在求解MAOP时具备较优的收敛性和分布性。 展开更多
关键词 高维多目标优化问题 PARETO支配 粒子群 多样性
下载PDF
基于径向空间划分的昂贵多目标进化算法 被引量:3
10
作者 顾清华 周煜丰 +1 位作者 李学现 阮顺领 《自动化学报》 EI CAS CSCD 北大核心 2022年第10期2564-2584,共21页
为了解决难以建立精确数学模型或者真实评估实验成本高昂的多目标优化问题,提出了一种基于径向空间划分的昂贵多目标进化算法.首先算法使用高斯回归作为代理模型逼近目标函数;然后将目标空间的个体投影到径向空间,结合目标空间和径向空... 为了解决难以建立精确数学模型或者真实评估实验成本高昂的多目标优化问题,提出了一种基于径向空间划分的昂贵多目标进化算法.首先算法使用高斯回归作为代理模型逼近目标函数;然后将目标空间的个体投影到径向空间,结合目标空间和径向空间信息保留对种群贡献更高的个体;之后由径向空间中个体的位置分布决定下一步应该选择哪些个体进行真实评估;最后,采用一种双档案管理策略维护代理模型的质量.数值实验和现实问题上的结果表明,与5种先进算法相比,该算法在解决昂贵多目标优化问题时能够提供更高质量的解. 展开更多
关键词 昂贵多目标优化问题 高斯过程 径向投影 双档案管理策略
下载PDF
基于估值不确定度排序顺序均值采样的昂贵高维多目标进化算法 被引量:1
11
作者 王浩 孙超利 张国晨 《控制与决策》 EI CSCD 北大核心 2023年第12期3317-3326,共10页
模型管理,特别是训练样本的选择和填充采样准则,是影响昂贵多目标优化算法求解性能的重要因素.为此,选择样本库中具有较好目标函数值的若干个体作为样本训练目标函数的代理模型,使用基于参考向量的进化算法搜索模型的最优解集,并提出一... 模型管理,特别是训练样本的选择和填充采样准则,是影响昂贵多目标优化算法求解性能的重要因素.为此,选择样本库中具有较好目标函数值的若干个体作为样本训练目标函数的代理模型,使用基于参考向量的进化算法搜索模型的最优解集,并提出一种基于个体目标函数估值不确定度排序顺序均值的采样策略,从该最优解集中选择两个个体进行真实的目标函数评价.为了验证算法的有效性,将所提出算法在DTLZ和WFG多目标优化测试问题和两个实际工程优化问题上进行测试,并与其他5种优秀的同类型算法进行结果对比.实验结果表明,所提出算法在求解昂贵高维多目标优化问题上是有效的. 展开更多
关键词 昂贵高维多目标优化 代理模型 填充采样准则 高斯过程模型 不确定度
原文传递
基于最小距离和聚合策略的分解多目标进化算法
12
作者 李二超 李康伟 《计算机应用》 CSCD 北大核心 2021年第1期22-28,共7页
针对基于帕累托(Pareto)支配的多目标进化算法在解决高维问题时选择压力降低,以及基于分解的多目标进化算法在提高收敛性和分布性的同时降低了种群多样性的问题,提出了一种基于最小距离和聚合策略的分解多目标进化算法。首先,使用基于... 针对基于帕累托(Pareto)支配的多目标进化算法在解决高维问题时选择压力降低,以及基于分解的多目标进化算法在提高收敛性和分布性的同时降低了种群多样性的问题,提出了一种基于最小距离和聚合策略的分解多目标进化算法。首先,使用基于角度分解的技术将目标空间分解为指定个数的子空间来提高种群的多样性;然后,在生成新解的过程中加入基于聚合的交叉邻域方法,使生成的新解更接近于父代解;最后,分两阶段在每个子空间内基于最小距离和聚合策略来选择解以提高收敛性和分布性。为了验证所提算法的可行性,采用标准测试函数ZDT和DTLZ进行仿真实验,结果表明所提算法的总体性能均优于经典的基于分解的多目标进化算法(MOEA/D)、MOEA/DDE、NSGA-Ⅲ和GrEA。可见,所提算法在提高多样性的同时可以有效平衡收敛性和多样性。 展开更多
关键词 进化优化算法 多目标优化问题 收敛性 多样性 分布性 分解
下载PDF
基于代理模型估值不确定度的昂贵多目标优化问题研究
13
作者 张晶 裴东兴 +1 位作者 马瑾 沈大伟 《石河子大学学报(自然科学版)》 CAS 北大核心 2024年第1期110-116,共7页
针对代理模型辅助的多目标优化算法中个体不确定度之间相互冲突的问题,本文提出个体每个目标估值不确定的填充准则,同时,为了减少训练模型消耗的计算资源,提出基于非支配排序的样本选择算法。为了验证该算法的可行性,采用DTLZ和WFG测试... 针对代理模型辅助的多目标优化算法中个体不确定度之间相互冲突的问题,本文提出个体每个目标估值不确定的填充准则,同时,为了减少训练模型消耗的计算资源,提出基于非支配排序的样本选择算法。为了验证该算法的可行性,采用DTLZ和WFG测试函数进行测试,得出结果与近些年发表5种具有代表性的同类型算法进行对比,结果说明该算法可以有效的解决昂贵高维高目标优化问题。 展开更多
关键词 进化算法 昂贵多目标优化问题 代理模型 填充准则 不确定度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部