We study the charge oscillation in the triangular quantum dots symmetrically coupled to the leads. A strong charge oscillation is observed even for a very small level difference. We attribute this oscillation behaviou...We study the charge oscillation in the triangular quantum dots symmetrically coupled to the leads. A strong charge oscillation is observed even for a very small level difference. We attribute this oscillation behaviour to the many- body effect in the strongly correlated system instead of the physical scenarios based on the mean-field approach in the previous works for the two-level dot. The level difference induces the difference of the occupations between different dots, while the symmetry of the many-body states favours the homogeneous distribution of the charge density on the three dots. The interplay of these two factors results in the charge oscillation.展开更多
基金supported by the National Natural Science Foundation of China(U1832202,11888101,11920101005,12141402,and 12274459)the Chinese Academy of Sciences(QYZDB-SSW-SLH043,XDB33020100,and XDB28000000)+4 种基金the Beijing Municipal Science and Technology Commission(Z171100002017018,and Z200005)the National Key R&D Program of China(2018YFE0202600,2022YFA1403100,and 2022YFA1403800)the Fundamental Research Funds for the Central Universities and Research Funds of Renmin University of China(RUC)(18XNLG14,19XNLG13,19XNLG17,and 20XNH062)the Synergic Extreme Condition User Facility,Beijing,ChinaBeijing National Laboratory for Condensed Matter Physics。
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11174228 and 10874132)
文摘We study the charge oscillation in the triangular quantum dots symmetrically coupled to the leads. A strong charge oscillation is observed even for a very small level difference. We attribute this oscillation behaviour to the many- body effect in the strongly correlated system instead of the physical scenarios based on the mean-field approach in the previous works for the two-level dot. The level difference induces the difference of the occupations between different dots, while the symmetry of the many-body states favours the homogeneous distribution of the charge density on the three dots. The interplay of these two factors results in the charge oscillation.