The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subduc...The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subducting crust at different depths. Oceanic subduction zones show a large variation in the geotherm, but seismicity and arc volcanism are only prominent in cold subduction zones where geothermal gradients are low. In contrast, continental subduction zones have low geothermal gradients, resulting in metamorphism in cold subduction zones and the absence of arc volcanism during subduction. In very cold subduction zone where the geothermal gradient is very low(?5?C/km), lawsonite may carry water into great depths of ?300 km. In the hot subduction zone where the geothermal gradient is high(>25?C/km), the subducting crust dehydrates significantly at shallow depths and may partially melt at depths of <80 km to form felsic melts, into which water is highly dissolved. In this case, only a minor amount of water can be transported into great depths. A number of intermediate modes are present between these two end-member dehydration modes, making subduction-zone dehydration various. Low-T/low-P hydrous minerals are not stable in warm subduction zones with increasing subduction depths and thus break down at forearc depths of ?60–80 km to release large amounts of water. In contrast, the low-T/low-P hydrous minerals are replaced by low-T/high-P hydrous minerals in cold subduction zones with increasing subduction depths, allowing the water to be transported to subarc depths of 80–160 km. In either case, dehydration reactions not only trigger seismicity in the subducting crust but also cause hydration of the mantle wedge. Nevertheless, there are still minor amounts of water to be transported by ultrahigh-pressure hydrous minerals and nominally anhydrous minerals into the deeper mantle. The mantle wedge overlying the subducting slab does not partially melt upon water influx for volcanic arc magmatism, but it is hydrat展开更多
In this paper a comprehensive tracing study is conducted on mantle degassing and deep-seated geological structures in different types of fault zones in the continent of China based on the helium isotope data, coupled ...In this paper a comprehensive tracing study is conducted on mantle degassing and deep-seated geological structures in different types of fault zones in the continent of China based on the helium isotope data, coupled with some indices such as CO2/3He, CH4/3He and 40Ar/36Ar, and geological tectonics data. There are four representative types of fault zones: (1) Lithospheric fault zones in the extensional tectonic environment are characterized by a small Earth’s crust thickness, a lower CH4/3He-high R and lower CO2/3He-high R system, the strongest mantle de- gassing, and the dominance of mantle fluid, as is represented by the Tancheng-Lujiang fault zone. (2) The lithospheric fault zones or the subduction zone in the strongly compresso-tectonic envi- ronment, for instance, the Bangonghu-Nujiang fault zone, are characterized by a huge thick Earth’s crust, with the R/Ra values within the range of 0.43―1.13, and weak mantle degassing with mantle-source helium accounting for 5%―14% of the total. (3) The deep-seated fault zones at the basinal margins of an orogenic belt are characterized by R values being on order of mag- nitude of 10?7, and the CH4/3He values, 109―1010, CO2/3He values, 106―108; as well as much weak mantle degassing. (4) The crustal fault zones in the orogenic belt, such as the Yaojie fault zone (F19), possess a high CH4/3He-low R (10?8) and high CO2/3He-low R system, with no obvi- ous sign of mantle degassing. Studies have shown that the deep-seated huge fault zones are the major channel ways for mantle degassing, the main factors controlling the intensity of mantle degassing are fault depth, tectonic environment and crust thickness; the intensity of mantle de- gassing can reflect the depth and the status of deep-seated tectonic environment of fault, while the geochemical tracing studies of gases can open up a new research approach; upwelling ac- tivity of hydrothermal fluids from the deep interior of the Earth may be one of the driving forces for the formation and evolution of the huge deep 展开更多
From the 1960 s to 1970 s, North China has been hit by a series of large earthquakes. During the past half century,geophysicists have carried out numerous surveys of the crustal and upper mantle structure, and associa...From the 1960 s to 1970 s, North China has been hit by a series of large earthquakes. During the past half century,geophysicists have carried out numerous surveys of the crustal and upper mantle structure, and associated studies in North China.They have made significant progress on several key issues in the geosciences, such as the crustal and upper mantle structure and the seismogenic environment of strong earthquakes. Deep seismic profiling results indicate a complex tectonic setting in the strong earthquake areas of North China, where a listric normal fault and a low-angle detachment in the upper crust coexist with a high-angle deep fault passing through the lower crust to the Moho beneath the hypocenter. Seismic tomography images reveal that most of the large earthquakes occurred in the transition between the high-and low-velocity zones, and the Tangshan earthquake area is characterized by a low-velocity anomaly in the middle-lower crust. Comprehensive analysis of geophysical data identified that the deep seismogenic environment in the North China extensional tectonic region is generally characterized by a low-velocity anomalous belt beneath the hypocenter, inconsistency of the deep and shallow structures in the crust, a steep crustalal-scale fault,relative lower velocities in the uppermost mantle, and local Moho uplift, etc. This indicates that the lithospheric structure of North China has strong heterogeneities. Geologically, the North China region had been a stable craton named the North China Craton or in brief the NCC, containing crustal rocks as old as ~3.8 Ga. The present-day strong seismic activity and the lower velocity of the lower crust in the NCC are much different from typical stable cratons around the world. These findings provide significant evidence for the destruction of the NCC. Although deep seismic profiling and seismic tomography have greatly enhanced knowledge about the deep-seated structure and seismogenic environment, some fundamental issues still remain and require further work.展开更多
The geochemical study of the Earth's mantle provides important constraints on our understanding of the formation and evolution of Earth, its internal structure, and the mantle dynamics. The bulk Earth composition ...The geochemical study of the Earth's mantle provides important constraints on our understanding of the formation and evolution of Earth, its internal structure, and the mantle dynamics. The bulk Earth composition is inferred by comparing terrestrial mantle rocks with chondrites, which leads to the chondritic Earth model. That is, Earth has the same relative proportions of refractory elements as that in chondrites, but it is depleted in volatiles. Ocean island basalts(OIB) may be produced by mantle plumes with possible deep origins; consequently, they provide unique opportunity to study the deep Earth. Isotopic variations within OIB can be described using a limited number of mantle endmembers, such as EM1, EM2 and HIMU, and they have been used to decipher important mantle processes. Introduction of crustal material into the deep mantle via subduction and delamination is important in generating mantle heterogeneity; however, there is active debate on how they were sampled by mantle melting, i.e.,the role of olivine-poor lithologies in the OIB petrogenesis. The origin and location of high 3He/4He mantle remain controversial,ranging from unprocessed(or less processed) primitive material in the lower mantle to highly processed materials with shallow origins, including ancient melting residues, mafic cumulates under arcs, and recycled hydrous minerals. Possible core-mantle interaction was hypothesized to introduce distinctive geochemical signatures such as radiogenic 186 Os and Fe and Ni enrichment in the OIB. Small but important variations in some short-lived nuclides, including 142 Nd, 182 W and several Xe isotopes, have been reported in ancient and modern terrestrial rocks, implying that the Earth's mantle must have been differentiated within the first 100 Myr of its formation, and the mantle is not efficiently homogenized by mantle convection.展开更多
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs r...S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.展开更多
基金supported by funds from the National Natural Science Foundation of China(Grant No.41590620)the Chinese Ministry of Science and Technology(Grant No.2015CB856100)
文摘The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subducting crust at different depths. Oceanic subduction zones show a large variation in the geotherm, but seismicity and arc volcanism are only prominent in cold subduction zones where geothermal gradients are low. In contrast, continental subduction zones have low geothermal gradients, resulting in metamorphism in cold subduction zones and the absence of arc volcanism during subduction. In very cold subduction zone where the geothermal gradient is very low(?5?C/km), lawsonite may carry water into great depths of ?300 km. In the hot subduction zone where the geothermal gradient is high(>25?C/km), the subducting crust dehydrates significantly at shallow depths and may partially melt at depths of <80 km to form felsic melts, into which water is highly dissolved. In this case, only a minor amount of water can be transported into great depths. A number of intermediate modes are present between these two end-member dehydration modes, making subduction-zone dehydration various. Low-T/low-P hydrous minerals are not stable in warm subduction zones with increasing subduction depths and thus break down at forearc depths of ?60–80 km to release large amounts of water. In contrast, the low-T/low-P hydrous minerals are replaced by low-T/high-P hydrous minerals in cold subduction zones with increasing subduction depths, allowing the water to be transported to subarc depths of 80–160 km. In either case, dehydration reactions not only trigger seismicity in the subducting crust but also cause hydration of the mantle wedge. Nevertheless, there are still minor amounts of water to be transported by ultrahigh-pressure hydrous minerals and nominally anhydrous minerals into the deeper mantle. The mantle wedge overlying the subducting slab does not partially melt upon water influx for volcanic arc magmatism, but it is hydrat
基金the State "973" Program(Grant No.G2002CB211701) the National Natural Science Foundation of China(Grant No.40372065).
文摘In this paper a comprehensive tracing study is conducted on mantle degassing and deep-seated geological structures in different types of fault zones in the continent of China based on the helium isotope data, coupled with some indices such as CO2/3He, CH4/3He and 40Ar/36Ar, and geological tectonics data. There are four representative types of fault zones: (1) Lithospheric fault zones in the extensional tectonic environment are characterized by a small Earth’s crust thickness, a lower CH4/3He-high R and lower CO2/3He-high R system, the strongest mantle de- gassing, and the dominance of mantle fluid, as is represented by the Tancheng-Lujiang fault zone. (2) The lithospheric fault zones or the subduction zone in the strongly compresso-tectonic envi- ronment, for instance, the Bangonghu-Nujiang fault zone, are characterized by a huge thick Earth’s crust, with the R/Ra values within the range of 0.43―1.13, and weak mantle degassing with mantle-source helium accounting for 5%―14% of the total. (3) The deep-seated fault zones at the basinal margins of an orogenic belt are characterized by R values being on order of mag- nitude of 10?7, and the CH4/3He values, 109―1010, CO2/3He values, 106―108; as well as much weak mantle degassing. (4) The crustal fault zones in the orogenic belt, such as the Yaojie fault zone (F19), possess a high CH4/3He-low R (10?8) and high CO2/3He-low R system, with no obvi- ous sign of mantle degassing. Studies have shown that the deep-seated huge fault zones are the major channel ways for mantle degassing, the main factors controlling the intensity of mantle degassing are fault depth, tectonic environment and crust thickness; the intensity of mantle de- gassing can reflect the depth and the status of deep-seated tectonic environment of fault, while the geochemical tracing studies of gases can open up a new research approach; upwelling ac- tivity of hydrothermal fluids from the deep interior of the Earth may be one of the driving forces for the formation and evolution of the huge deep
基金supported by the National Natural Science Foundation of China (Grant Nos. 91014006, 90914005 & 41474073)
文摘From the 1960 s to 1970 s, North China has been hit by a series of large earthquakes. During the past half century,geophysicists have carried out numerous surveys of the crustal and upper mantle structure, and associated studies in North China.They have made significant progress on several key issues in the geosciences, such as the crustal and upper mantle structure and the seismogenic environment of strong earthquakes. Deep seismic profiling results indicate a complex tectonic setting in the strong earthquake areas of North China, where a listric normal fault and a low-angle detachment in the upper crust coexist with a high-angle deep fault passing through the lower crust to the Moho beneath the hypocenter. Seismic tomography images reveal that most of the large earthquakes occurred in the transition between the high-and low-velocity zones, and the Tangshan earthquake area is characterized by a low-velocity anomaly in the middle-lower crust. Comprehensive analysis of geophysical data identified that the deep seismogenic environment in the North China extensional tectonic region is generally characterized by a low-velocity anomalous belt beneath the hypocenter, inconsistency of the deep and shallow structures in the crust, a steep crustalal-scale fault,relative lower velocities in the uppermost mantle, and local Moho uplift, etc. This indicates that the lithospheric structure of North China has strong heterogeneities. Geologically, the North China region had been a stable craton named the North China Craton or in brief the NCC, containing crustal rocks as old as ~3.8 Ga. The present-day strong seismic activity and the lower velocity of the lower crust in the NCC are much different from typical stable cratons around the world. These findings provide significant evidence for the destruction of the NCC. Although deep seismic profiling and seismic tomography have greatly enhanced knowledge about the deep-seated structure and seismogenic environment, some fundamental issues still remain and require further work.
基金supported by the National Science Foundation (Grant No. NSF EAR-1524387)National Natural Science Foundation of China (Grant No. 41590620)
文摘The geochemical study of the Earth's mantle provides important constraints on our understanding of the formation and evolution of Earth, its internal structure, and the mantle dynamics. The bulk Earth composition is inferred by comparing terrestrial mantle rocks with chondrites, which leads to the chondritic Earth model. That is, Earth has the same relative proportions of refractory elements as that in chondrites, but it is depleted in volatiles. Ocean island basalts(OIB) may be produced by mantle plumes with possible deep origins; consequently, they provide unique opportunity to study the deep Earth. Isotopic variations within OIB can be described using a limited number of mantle endmembers, such as EM1, EM2 and HIMU, and they have been used to decipher important mantle processes. Introduction of crustal material into the deep mantle via subduction and delamination is important in generating mantle heterogeneity; however, there is active debate on how they were sampled by mantle melting, i.e.,the role of olivine-poor lithologies in the OIB petrogenesis. The origin and location of high 3He/4He mantle remain controversial,ranging from unprocessed(or less processed) primitive material in the lower mantle to highly processed materials with shallow origins, including ancient melting residues, mafic cumulates under arcs, and recycled hydrous minerals. Possible core-mantle interaction was hypothesized to introduce distinctive geochemical signatures such as radiogenic 186 Os and Fe and Ni enrichment in the OIB. Small but important variations in some short-lived nuclides, including 142 Nd, 182 W and several Xe isotopes, have been reported in ancient and modern terrestrial rocks, implying that the Earth's mantle must have been differentiated within the first 100 Myr of its formation, and the mantle is not efficiently homogenized by mantle convection.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 40034010).
文摘S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.