基于云水资源积分推导公式,选取50年的气象站资料研究三江源地区(the Three River Headwaters Region,TRHR)云量与降水时空演变规律及其统计关系,并对降水效率(Precipitation Efficiency,PE)时空特征深入分析,挖掘人工增雨试验潜力.结...基于云水资源积分推导公式,选取50年的气象站资料研究三江源地区(the Three River Headwaters Region,TRHR)云量与降水时空演变规律及其统计关系,并对降水效率(Precipitation Efficiency,PE)时空特征深入分析,挖掘人工增雨试验潜力.结果表明:①总、低云量分别以长江源区的治多、清水河为高值中心向西呈"经向型"分布,向东呈"纬向型"分布.低云量与降水量呈增加趋势且通过了α=0.005显著性检验,总云量呈减少趋势并通过了α=0.01显著性检验;②各源区总、低云量与降水的突变年份不同步.降水年际波动较云量变化大且低云与降水相关性较好.低云量随总云量增加而增加,当总云量增加1.7%时,低云量将增加1%,同期降水增加10mm,年降雨频率最高出现在400mm;③TRHR多年PE空间分布与降水、云量一致,整体表现出自东南向西北方向递减空间分布,PE高、低值区分布在34°N以南和34°N以北.④TRHR多年平均PE为40.3%且增幅变化不大,长江源区西部和黄河源区东北部增雨潜力(Precipitation Enhancement Potential,PEP)最大,最佳开发时间在3~4月和10~11月.展开更多
文摘基于云水资源积分推导公式,选取50年的气象站资料研究三江源地区(the Three River Headwaters Region,TRHR)云量与降水时空演变规律及其统计关系,并对降水效率(Precipitation Efficiency,PE)时空特征深入分析,挖掘人工增雨试验潜力.结果表明:①总、低云量分别以长江源区的治多、清水河为高值中心向西呈"经向型"分布,向东呈"纬向型"分布.低云量与降水量呈增加趋势且通过了α=0.005显著性检验,总云量呈减少趋势并通过了α=0.01显著性检验;②各源区总、低云量与降水的突变年份不同步.降水年际波动较云量变化大且低云与降水相关性较好.低云量随总云量增加而增加,当总云量增加1.7%时,低云量将增加1%,同期降水增加10mm,年降雨频率最高出现在400mm;③TRHR多年PE空间分布与降水、云量一致,整体表现出自东南向西北方向递减空间分布,PE高、低值区分布在34°N以南和34°N以北.④TRHR多年平均PE为40.3%且增幅变化不大,长江源区西部和黄河源区东北部增雨潜力(Precipitation Enhancement Potential,PEP)最大,最佳开发时间在3~4月和10~11月.