We undertook zircon U-Pb dating and geochemical analyses of volcanic rocks from the Manitu Formation in the Hongol area, northeastern Inner Mongolia, to determine their age, petrogenesis and sources, which are importa...We undertook zircon U-Pb dating and geochemical analyses of volcanic rocks from the Manitu Formation in the Hongol area, northeastern Inner Mongolia, to determine their age, petrogenesis and sources, which are important for understanding the Late Mesozoic tectonic evolution of the Great Xing'an Range. The volcanic rocks of the Manitu Formation from the Hongol area consist primarily of trachyandesite, based on their chemical compositions. The zircons from two of these trachyandesites are euhedral-subhedral in shape, display clear oscillatory growth zoning and have high Th/U ratios (0.31- 1.15), indicating a magmatic origin. The results of LA-ICP-MS zircon U-Pb dating indicate that the volcanic rocks from the Manitu Formation in the Hongol area formed during the early Early Cretaceous with ages of 138.9-140.5 Ma. The volcanic rocks are high in alkali (Na2O + K2O = 6.22-8.26 wt%), potassium (K2O = 2.49-4.58 wt%) and aluminium (Al2O3 = 14.27-15.88 wt%), whereas they are low in iron (total Fe2O3 = 3.76-6.53 wt%) and titanium (TiO2 = 1.02-1.61 wt%). These volcanic rocks are obviously enriched in large ion lithophile elements, such as Rb, Ba, Th and U, and light rare earth elements, and are depleted in high field strength elements, such as Nb, Ta and Ti with pronounced negative anomalies. Their Sr-Nd-Pb isotopic compositions show positive εNd(t) (+0.16%o t0+1.64%o) and low TDM(t) (694--767 Ma). The geochemical characteristics of these volcanic rocks suggest that they belong to a shoshonitic series and were likely generated from the partial melting of an enriched lithospheric mantle that was metasomatised by fluids released from a subducted slab during the closure of the Mongol- Okhotsk Ocean. Elemental and isotopic features reveal that fractional crystallization with the removal of ferromagnesian minerals, plagioclase, ilmenite, magnetite and apatite played an important role during the evolution of the magma. These shoshonitic rocks were produced by the partial melting of展开更多
基金financially supported by the Geological Survey Project of China(Grant Nos.1212011220458,1212011220492)
文摘We undertook zircon U-Pb dating and geochemical analyses of volcanic rocks from the Manitu Formation in the Hongol area, northeastern Inner Mongolia, to determine their age, petrogenesis and sources, which are important for understanding the Late Mesozoic tectonic evolution of the Great Xing'an Range. The volcanic rocks of the Manitu Formation from the Hongol area consist primarily of trachyandesite, based on their chemical compositions. The zircons from two of these trachyandesites are euhedral-subhedral in shape, display clear oscillatory growth zoning and have high Th/U ratios (0.31- 1.15), indicating a magmatic origin. The results of LA-ICP-MS zircon U-Pb dating indicate that the volcanic rocks from the Manitu Formation in the Hongol area formed during the early Early Cretaceous with ages of 138.9-140.5 Ma. The volcanic rocks are high in alkali (Na2O + K2O = 6.22-8.26 wt%), potassium (K2O = 2.49-4.58 wt%) and aluminium (Al2O3 = 14.27-15.88 wt%), whereas they are low in iron (total Fe2O3 = 3.76-6.53 wt%) and titanium (TiO2 = 1.02-1.61 wt%). These volcanic rocks are obviously enriched in large ion lithophile elements, such as Rb, Ba, Th and U, and light rare earth elements, and are depleted in high field strength elements, such as Nb, Ta and Ti with pronounced negative anomalies. Their Sr-Nd-Pb isotopic compositions show positive εNd(t) (+0.16%o t0+1.64%o) and low TDM(t) (694--767 Ma). The geochemical characteristics of these volcanic rocks suggest that they belong to a shoshonitic series and were likely generated from the partial melting of an enriched lithospheric mantle that was metasomatised by fluids released from a subducted slab during the closure of the Mongol- Okhotsk Ocean. Elemental and isotopic features reveal that fractional crystallization with the removal of ferromagnesian minerals, plagioclase, ilmenite, magnetite and apatite played an important role during the evolution of the magma. These shoshonitic rocks were produced by the partial melting of