期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种基于流形距离核的谱聚类算法 被引量:27
1
作者 陶新民 宋少宇 +1 位作者 曹盼东 付丹丹 《信息与控制》 CSCD 北大核心 2012年第3期307-313,共7页
针对标准谱聚类算法中,基于欧氏距离的相似性度量不能完全反映数据聚类复杂的空间分布特性的问题,提出了一种基于流形距离核的谱聚类算法.它能充分挖掘数据集中的内在结构信息,较好地反映局部和全局一致性,并且可以很好地防止"桥&q... 针对标准谱聚类算法中,基于欧氏距离的相似性度量不能完全反映数据聚类复杂的空间分布特性的问题,提出了一种基于流形距离核的谱聚类算法.它能充分挖掘数据集中的内在结构信息,较好地反映局部和全局一致性,并且可以很好地防止"桥"噪声点的影响,提高算法的聚类性能.与传统的聚类算法和常见谱聚类算法进行了比较,在人工数据集和UCI数据集上的实验都验证了本算法能够获得更好的聚类效果. 展开更多
关键词 谱图理论 谱聚类 流形距离核 自适应
原文传递
一种基于流形距离核的谱聚类和量子聚类融合算法 被引量:1
2
作者 马宇红 李兴义 +1 位作者 薛生倩 王小小 《西北师范大学学报(自然科学版)》 CAS 北大核心 2023年第2期37-46,共10页
谱聚类是一种基于图谱划分理论的聚类算法,本质上是将聚类问题转化为图的最优划分问题;量子聚类可以充分挖掘数据样本的内在信息,是一种基于划分的无监督聚类算法.为了充分发挥谱聚类算法和量子聚类算法的优势,本文提出了一种基于流形... 谱聚类是一种基于图谱划分理论的聚类算法,本质上是将聚类问题转化为图的最优划分问题;量子聚类可以充分挖掘数据样本的内在信息,是一种基于划分的无监督聚类算法.为了充分发挥谱聚类算法和量子聚类算法的优势,本文提出了一种基于流形距离核的谱聚类和量子聚类融合算法(MFD-NJW-QC).首先,计算数据集的流形距离核矩阵,构造相应的拉普拉斯矩阵;其次,根据拉普拉斯矩阵的若干最大特征值对应的特征向量构造新数据集,并使用量子聚类算法对新构造的数据集进行聚类,从而得到原始数据的类标签;最后,基于7个人工数据集和5个UCI数据集验证MFD-NJW-QC算法的聚类性能.结果显示,MFD-NJW-QC算法能够明显提高聚类性能,尤其对于具有流形结构,且类簇大小不平衡、密度分布不均匀的数据集优势更为突出. 展开更多
关键词 流形距离核 谱聚类 量子聚类 拉普拉斯矩阵 特征向量
下载PDF
基于混合测度的并行仿射传播聚类算法 被引量:4
3
作者 张建朋 陈福才 +1 位作者 李邵梅 于洪涛 《计算机科学》 CSCD 北大核心 2013年第7期167-172,195,共7页
针对仿射传播聚类(AP)算法应用于流形结构复杂、密度不均匀的数据集存在的不足,通过学习数据集的低维流形结构,提出了密度自适应的"流形距离核"(ad-MDK)的概念。该距离测度既考虑了数据点的局部密度信息,又包含了数据集全局... 针对仿射传播聚类(AP)算法应用于流形结构复杂、密度不均匀的数据集存在的不足,通过学习数据集的低维流形结构,提出了密度自适应的"流形距离核"(ad-MDK)的概念。该距离测度既考虑了数据点的局部密度信息,又包含了数据集全局结构信息,从而提高了算法对这类数据集的处理能力。同时,针对引入流形距离所带来的计算复杂问题,提出了算法的并行化设计方法,有效提高了算法处理效率。通过在多个数据集上的实验验证了所提算法在处理大规模多尺度数据集上的性能优于传统AP算法。 展开更多
关键词 仿射传播聚类 流形距离核 共享最近邻 并行计算
下载PDF
基于流形距离核的自适应迁移谱聚类算法 被引量:3
4
作者 齐晓轩 都丽 洪振麒 《计算机应用与软件》 北大核心 2020年第8期265-273,共9页
谱聚类算法中,当样本的簇边缘分布不均匀或不同簇边缘分布密度相近时,会导致错分现象。通过对相似度矩阵的改进,提出基于流形距离核的自适应迁移谱聚类算法。使用流形距离作为构造相似度矩阵的度量方法,共享近邻方法对相似度矩阵进行自... 谱聚类算法中,当样本的簇边缘分布不均匀或不同簇边缘分布密度相近时,会导致错分现象。通过对相似度矩阵的改进,提出基于流形距离核的自适应迁移谱聚类算法。使用流形距离作为构造相似度矩阵的度量方法,共享近邻方法对相似度矩阵进行自适应调整,且使用加权距离自适应调节核参数,提高谱聚类对复杂数据集的处理能力。针对样本匮乏或受到污染时聚类效果不佳问题,引入迁移学习,利用源域知识指导目标域进行聚类。经实验验证,该算法性能优于传统谱聚类算法。 展开更多
关键词 相似度矩阵 流形距离核 谱聚类 迁移学习 全局一致性 局部结构 自适应
下载PDF
流形距离与压缩感知核稀疏投影的局部线性嵌入算法 被引量:3
5
作者 马丽 董唯光 安志龙 《计算机与数字工程》 2020年第3期523-527,727,共6页
流形学习算法的目的是发现嵌入在高维数据空间中的低维表示,现有的流形学习算法对邻域参数k和噪声比较敏感。针对此问题,文中提出一种流形距离与压缩感知核稀疏投影的局部线性嵌入算法,其核心思想是集成局部线性嵌入算法对高维流形结构... 流形学习算法的目的是发现嵌入在高维数据空间中的低维表示,现有的流形学习算法对邻域参数k和噪声比较敏感。针对此问题,文中提出一种流形距离与压缩感知核稀疏投影的局部线性嵌入算法,其核心思想是集成局部线性嵌入算法对高维流形结构数据的降维有效性与压缩感知核稀疏投影的强鉴别性,以实现高效有降噪流形学习。首先,在选择各样本点的近邻域时,采用流形距离代替欧氏距离度量数据间相似度的方法,创建能够正确反映流形内部结构的邻域图,解决以欧氏距离作为相似性度量时对邻域参数的敏感。其次,利用压缩感知核稀疏投影作为从高维观测空间到低维嵌入空间的映射,增强算法的鉴别性。最后,利用Matlab工具对实验数据集进行仿真,进一步验证所提算法的有效性。 展开更多
关键词 流形学习 流形距离 核稀疏投影 压缩感知 局部线性嵌入
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部