Geological adaptability matching design of a disc cutter is the prerequisite of cutter head design for tunnel boring machines(TBMs)and plays an important role in improving the tunneling efficiency of TBMs.The main pur...Geological adaptability matching design of a disc cutter is the prerequisite of cutter head design for tunnel boring machines(TBMs)and plays an important role in improving the tunneling efficiency of TBMs.The main purpose of the cutter matching design is to evaluate the cutter performance and select the appropriate cutter size.In this paper,a novel evaluation method based on multicriteria decision making(MCDM)techniques was developed to help TBM designers in the process of determining the cutter size.The analytic hierarchy process(AHP)and matter element analysis were applied to obtaining the weights of the cutter evaluation criteria,and the fuzzy comprehensive evaluation and technique for order performance by similarity to ideal solution(TOPSIS)approaches were employed to determine the ranking of the cutters.A case application was offered to illustrate and validate the proposed method.The results of the project case demonstrate that this method is reasonable and feasible for disc cutter size selection in cutter head design.展开更多
Facility layout selection is a multi-criteria decision making (MCDM) problem,since it has a strategic impact on the efficiency of manufacturing system.In view of the interdependency among selection criteria,analytic n...Facility layout selection is a multi-criteria decision making (MCDM) problem,since it has a strategic impact on the efficiency of manufacturing system.In view of the interdependency among selection criteria,analytic network process (ANP) is proposed to analyze the structure of the facility layout selection problem and determine the weights for each criterion.A network structure is constructed that shows all elements and clusters and their interactions.Limit priorities are also calculated which help decision maker evaluate the relative importance among criterion in the alternative selection process.Moreover,a hybrid MCDM approach that employs ANP and technique for order preference by similarity to an ideal solution (TOPSIS)method to rank the optimal facility layout alternatives.Finally,an application of a new aeronautic component assembly workshop facility layout selection is conducted.To further illustrate the advantage of the proposed approach,the difference between ANP-TOPSIS and AHP-TOPSIS methods are compared and discussed.Results have demonstrated the effectiveness and feasibility of the proposed method.展开更多
Selection of the crusher required a great deal of design regarding to the mine planning. Selection of suitable primary crusher from all of available primary crushers is a multi-criterion decision making(MCDM) problem....Selection of the crusher required a great deal of design regarding to the mine planning. Selection of suitable primary crusher from all of available primary crushers is a multi-criterion decision making(MCDM) problem. The present work explores the use of technique for order performance by similarity to ideal solution(TOPSIS) with fuzzy set theory to select best primary crusher for Golegohar Iron Mine in Iran. Gyratory, double toggle jaw, single toggle jaw, high speed roll crusher, low speed sizer, impact crusher, hammer mill and feeder breaker crushers have been considered as alternatives. Also, the capacity, feed size, product size, rock compressive strength, abrasion index and application of primary crusher for mobile plants were considered as criteria for solution of this MCDM problem. To determine the order of the alternatives, closeness coefficient is defined by calculating the distances to the fuzzy positive ideal solution(FPIS) and fuzzy negative ideal solution(FNIS). Results of our work based on fuzzy TOPSIS method show that the gyratory is the best primary crusher for the studied mine.展开更多
Identifying essential proteins from protein-protein interaction networks is important for studies onbiological evolution and new drug’s development.Most of the presented criteria for prioritizing essential proteinson...Identifying essential proteins from protein-protein interaction networks is important for studies onbiological evolution and new drug’s development.Most of the presented criteria for prioritizing essential proteinsonly focus on a certain attribute of the proteins in the network,which suffer from information loss.In order toovercome this problem,a relatively comprehensive and effective novel method for essential proteins identificationbased on improved multicriteria decision making(MCDM),called essential proteins identification-technique fororder preference by similarity to ideal solution(EPI-TOPSIS),is proposed.First,considering different attributes ofproteins,we propose three methods from different aspects to evaluate the significance of the proteins:gene-degreecentrality(GDC)for gene expression sequence;subcellular-neighbor-degree centrality(SNDC)and subcellular-indegree centrality(SIDC)for subcellular location information and protein complexes.Then,betweenness centrality(BC)and these three methods are considered together as the multiple criteria of the decision-making model.Analytic hierarchy process is used to evaluate the weights of each criterion,and the essential proteins are prioritizedby an ideal solution of MCDM,i.e.,TOPSIS.Experiments are conducted on YDIP,YMIPS,Krogan and BioGRIDnetworks.The results indicate that EPI-TOPSIS outperforms several state-of-the-art approaches for identifyingthe essential proteins through the performance measures.展开更多
Software developers endeavor to build their products with the least number of bugs.Despite this,many vulnerabilities are detected in software that threatens its integrity.Various automated software i.e.,vulnerability ...Software developers endeavor to build their products with the least number of bugs.Despite this,many vulnerabilities are detected in software that threatens its integrity.Various automated software i.e.,vulnerability scanners,are available in the market which helps detect and manage vulnerabilities in a computer,application,or a network.Hence,the choice of an appropriate vulnerability scanner is crucial to ensure efficient vulnerability management.The current work serves a dual purpose,first,to identify the key factors which affect the vulnerability discovery process in a network.The second,is to rank the popular vulnerability scanners based on the identified attributes.This will aid the firm in determining the best scanner for them considering multiple aspects.The multi-criterion decision making based ranking approach has been discussed using the Intuitionistic Fuzzy set(IFS)and Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)to rank the various scanners.Using IFS TOPSIS,the opinion of a whole group could be simultaneously considered in the vulnerability scanner selection.In this study,five popular vulnerability scanners,namely,Nessus,Fsecure Radar,Greenbone,Qualys,and Nexpose have been considered.The inputs of industry specialists i.e.,people who deal in software security and vulnerability management process have been taken for the ranking process.Using the proposed methodology,a hierarchical classification of the various vulnerability scanners could be achieved.The clear enumeration of the steps allows for easy adaptability of the model to varied situations.This study will help product developers become aware of the needs of the market and design better scanners.And from the user’s point of view,it will help the system administrators in deciding which scanner to deploy depending on the company’s needs and preferences.The current work is the first to use a Multi Criterion Group Decision Making technique in vulnerability scanner selection.展开更多
Green manufacturing is a mode to realize environmental friendliness by considering the environmental impact and energy consumption in manufacturing process.In order to make an environmental friendly assessment for man...Green manufacturing is a mode to realize environmental friendliness by considering the environmental impact and energy consumption in manufacturing process.In order to make an environmental friendly assessment for manufacturing process,a multi-criteria decision making( MCDM) model combined with fuzzy analytic hierarchy process( FAHP) and fuzzy technique for order preference by similarity to ideal solution( FTOPSIS) is proposed in this work.The environmental and resource criteria and manufacturing process objects are identified as the first step.Then,the weights of the criteria are calculated by FAHP.Finally,based on experts' evaluation using fuzzy words,the manufacturing process objects are ranked by FTOPSIS.The proposed methodology is applied to a gear shaft manufacturing.The sensitivity analysis and comparisons are implemented to prove its robustness and effectiveness for the ecofriendly assessment for process objects.展开更多
The East Kolkata Wetlands (EKW) is located on the eastern periphery of the city of Kolkata and extends up to theBidyadhari-Matla River confluence. It is a Ramsar Site and acts as an absorber basin for a large number o...The East Kolkata Wetlands (EKW) is located on the eastern periphery of the city of Kolkata and extends up to theBidyadhari-Matla River confluence. It is a Ramsar Site and acts as an absorber basin for a large number of con-taminants drained from Kolkata. Agricultural lands, sewage-fed fisheries, garbage dumping fields, horticulture,and built-up areas are included in this protected area, that covers approximately 125 km2. It reveals that climatechange reduces the variety of wetland ecosystem services and increases socio-economic vulnerability and eco-nomic stress. The human encroachment, reclamation of land for agriculture, aquaculture, and urban expansion inand around Kolkata has recently adversely threatened the EKW. The remotely sensed data, socio-economic data,and responses of inhabitants have been used to analyse the EKW’s risk and vulnerability. We employed geospatialanalysis by using the Multi-Criteria Decision Making (MCDM) method using nine risk factors. An in-depth analysisof the EKW using geospatial techniques and the Fuzzy Analytic Hierarchy Process (FAHP) helped to understandthe EKW transformations through vulnerability and risk analysis. The results show that the transformation of thewetland to aquaculture, eutrophication and pollution, road proximity, waste dumping, population density, andgrowth are the main factors for the deteriorating health, quality, and environment of the EKW. It also reveals thatquantitative and qualitative evaluations of ecosystem services, wetland degradation, transformation, and cause-effect rapport should be periodically assessed using scientific methods like FAHP, RS, GIS to formulate resilient,integrated plans and strategy for the sustainable management of the EKW.展开更多
基金Project(51475478)supported by the National Natural Science Foundation of ChinaProject(2013CB035401)supported by the National Basic Research Program of China+1 种基金Project(2012AA041801)supported by the National High-tech Research and Development Program of ChinaProject(CX2014B058)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Geological adaptability matching design of a disc cutter is the prerequisite of cutter head design for tunnel boring machines(TBMs)and plays an important role in improving the tunneling efficiency of TBMs.The main purpose of the cutter matching design is to evaluate the cutter performance and select the appropriate cutter size.In this paper,a novel evaluation method based on multicriteria decision making(MCDM)techniques was developed to help TBM designers in the process of determining the cutter size.The analytic hierarchy process(AHP)and matter element analysis were applied to obtaining the weights of the cutter evaluation criteria,and the fuzzy comprehensive evaluation and technique for order performance by similarity to ideal solution(TOPSIS)approaches were employed to determine the ranking of the cutters.A case application was offered to illustrate and validate the proposed method.The results of the project case demonstrate that this method is reasonable and feasible for disc cutter size selection in cutter head design.
基金supported by the National Natural Science Foundation of China (No.51575274)the National Defense Basic Scientific Research Program of China (No.JCKY2016605B006)the Key Research and Development Project of Jiangxi Province in China (No.20161ACE50004)
文摘Facility layout selection is a multi-criteria decision making (MCDM) problem,since it has a strategic impact on the efficiency of manufacturing system.In view of the interdependency among selection criteria,analytic network process (ANP) is proposed to analyze the structure of the facility layout selection problem and determine the weights for each criterion.A network structure is constructed that shows all elements and clusters and their interactions.Limit priorities are also calculated which help decision maker evaluate the relative importance among criterion in the alternative selection process.Moreover,a hybrid MCDM approach that employs ANP and technique for order preference by similarity to an ideal solution (TOPSIS)method to rank the optimal facility layout alternatives.Finally,an application of a new aeronautic component assembly workshop facility layout selection is conducted.To further illustrate the advantage of the proposed approach,the difference between ANP-TOPSIS and AHP-TOPSIS methods are compared and discussed.Results have demonstrated the effectiveness and feasibility of the proposed method.
文摘Selection of the crusher required a great deal of design regarding to the mine planning. Selection of suitable primary crusher from all of available primary crushers is a multi-criterion decision making(MCDM) problem. The present work explores the use of technique for order performance by similarity to ideal solution(TOPSIS) with fuzzy set theory to select best primary crusher for Golegohar Iron Mine in Iran. Gyratory, double toggle jaw, single toggle jaw, high speed roll crusher, low speed sizer, impact crusher, hammer mill and feeder breaker crushers have been considered as alternatives. Also, the capacity, feed size, product size, rock compressive strength, abrasion index and application of primary crusher for mobile plants were considered as criteria for solution of this MCDM problem. To determine the order of the alternatives, closeness coefficient is defined by calculating the distances to the fuzzy positive ideal solution(FPIS) and fuzzy negative ideal solution(FNIS). Results of our work based on fuzzy TOPSIS method show that the gyratory is the best primary crusher for the studied mine.
基金the National Natural Science Foundation of China(Nos.62162040 and 11861045)。
文摘Identifying essential proteins from protein-protein interaction networks is important for studies onbiological evolution and new drug’s development.Most of the presented criteria for prioritizing essential proteinsonly focus on a certain attribute of the proteins in the network,which suffer from information loss.In order toovercome this problem,a relatively comprehensive and effective novel method for essential proteins identificationbased on improved multicriteria decision making(MCDM),called essential proteins identification-technique fororder preference by similarity to ideal solution(EPI-TOPSIS),is proposed.First,considering different attributes ofproteins,we propose three methods from different aspects to evaluate the significance of the proteins:gene-degreecentrality(GDC)for gene expression sequence;subcellular-neighbor-degree centrality(SNDC)and subcellular-indegree centrality(SIDC)for subcellular location information and protein complexes.Then,betweenness centrality(BC)and these three methods are considered together as the multiple criteria of the decision-making model.Analytic hierarchy process is used to evaluate the weights of each criterion,and the essential proteins are prioritizedby an ideal solution of MCDM,i.e.,TOPSIS.Experiments are conducted on YDIP,YMIPS,Krogan and BioGRIDnetworks.The results indicate that EPI-TOPSIS outperforms several state-of-the-art approaches for identifyingthe essential proteins through the performance measures.
文摘Software developers endeavor to build their products with the least number of bugs.Despite this,many vulnerabilities are detected in software that threatens its integrity.Various automated software i.e.,vulnerability scanners,are available in the market which helps detect and manage vulnerabilities in a computer,application,or a network.Hence,the choice of an appropriate vulnerability scanner is crucial to ensure efficient vulnerability management.The current work serves a dual purpose,first,to identify the key factors which affect the vulnerability discovery process in a network.The second,is to rank the popular vulnerability scanners based on the identified attributes.This will aid the firm in determining the best scanner for them considering multiple aspects.The multi-criterion decision making based ranking approach has been discussed using the Intuitionistic Fuzzy set(IFS)and Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)to rank the various scanners.Using IFS TOPSIS,the opinion of a whole group could be simultaneously considered in the vulnerability scanner selection.In this study,five popular vulnerability scanners,namely,Nessus,Fsecure Radar,Greenbone,Qualys,and Nexpose have been considered.The inputs of industry specialists i.e.,people who deal in software security and vulnerability management process have been taken for the ranking process.Using the proposed methodology,a hierarchical classification of the various vulnerability scanners could be achieved.The clear enumeration of the steps allows for easy adaptability of the model to varied situations.This study will help product developers become aware of the needs of the market and design better scanners.And from the user’s point of view,it will help the system administrators in deciding which scanner to deploy depending on the company’s needs and preferences.The current work is the first to use a Multi Criterion Group Decision Making technique in vulnerability scanner selection.
基金National Natural Science Foundation of China(No.51475459)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.PAPD)
文摘Green manufacturing is a mode to realize environmental friendliness by considering the environmental impact and energy consumption in manufacturing process.In order to make an environmental friendly assessment for manufacturing process,a multi-criteria decision making( MCDM) model combined with fuzzy analytic hierarchy process( FAHP) and fuzzy technique for order preference by similarity to ideal solution( FTOPSIS) is proposed in this work.The environmental and resource criteria and manufacturing process objects are identified as the first step.Then,the weights of the criteria are calculated by FAHP.Finally,based on experts' evaluation using fuzzy words,the manufacturing process objects are ranked by FTOPSIS.The proposed methodology is applied to a gear shaft manufacturing.The sensitivity analysis and comparisons are implemented to prove its robustness and effectiveness for the ecofriendly assessment for process objects.
基金The authors would like to thank the Netaji Subhas Open Uni-versity,Kolkata,for providing the supportive research funding(No.AC/140/2021-22).
文摘The East Kolkata Wetlands (EKW) is located on the eastern periphery of the city of Kolkata and extends up to theBidyadhari-Matla River confluence. It is a Ramsar Site and acts as an absorber basin for a large number of con-taminants drained from Kolkata. Agricultural lands, sewage-fed fisheries, garbage dumping fields, horticulture,and built-up areas are included in this protected area, that covers approximately 125 km2. It reveals that climatechange reduces the variety of wetland ecosystem services and increases socio-economic vulnerability and eco-nomic stress. The human encroachment, reclamation of land for agriculture, aquaculture, and urban expansion inand around Kolkata has recently adversely threatened the EKW. The remotely sensed data, socio-economic data,and responses of inhabitants have been used to analyse the EKW’s risk and vulnerability. We employed geospatialanalysis by using the Multi-Criteria Decision Making (MCDM) method using nine risk factors. An in-depth analysisof the EKW using geospatial techniques and the Fuzzy Analytic Hierarchy Process (FAHP) helped to understandthe EKW transformations through vulnerability and risk analysis. The results show that the transformation of thewetland to aquaculture, eutrophication and pollution, road proximity, waste dumping, population density, andgrowth are the main factors for the deteriorating health, quality, and environment of the EKW. It also reveals thatquantitative and qualitative evaluations of ecosystem services, wetland degradation, transformation, and cause-effect rapport should be periodically assessed using scientific methods like FAHP, RS, GIS to formulate resilient,integrated plans and strategy for the sustainable management of the EKW.