Nanocomposites with heterogeneous structures and magneto-electric synergistic losses have broad prospects for improving electromagnetic wave(EMW)absorption performance.In this study,we synthesized Co_(2)NiO_(4)@MnCo_(...Nanocomposites with heterogeneous structures and magneto-electric synergistic losses have broad prospects for improving electromagnetic wave(EMW)absorption performance.In this study,we synthesized Co_(2)NiO_(4)@MnCo_(2)O_(4.5)nanoparticles with abundant hetero-interfaces and multiple magnetoelectric loss mechanisms by a facile hydrothermal method.The excess 0.5 oxygen atoms in MnCo_(2)O_(4.5) produce more vacancies and contribute to the enhancement of electrical conductivity.Sequential nanoneedle clusters facilitate multiple reflections and absorption of EMW in the materials,which are accompanied by an abundance of heterogeneous interfaces to improve the dielectric loss.The Co_(2)NiO_(4)@MnCo_(2)O_(4.5)composites showed a minimum reflection loss(RLmin)of30.01 dB and a superior effective absorption bandwidth(EAB)of 6.12 GHz(11.88 GHze18 GHz)at a thickness of 2.00 mm.Computer Simulation Technology(CST)revealed that the obtained particles show very low radar crosssection(RCS)values and almost full coverage angles.The maximum reduction of RCS at vertical incidence reaches 19.98 dB m2.The Co_(2)NiO_(4)@MnCo_(2)O_(4.5)nanoparticles exhibit outstanding radar attenuation properties,which can effectively inhibit the reflection and scattering of EMW.Therefore,the prepared Co_(2)NiO_(4)@MnCo_(2)O_(4.5)absorbers have great application potential in the field of EMW absorption.展开更多
Steel structures are widely used in railway infrastructures.Their stress state is the most important determinant of the safety of these structures.The elasto-magnetic (EM) sensor is the most promising for stress monit...Steel structures are widely used in railway infrastructures.Their stress state is the most important determinant of the safety of these structures.The elasto-magnetic (EM) sensor is the most promising for stress monitoring of in-service steel structures.Nevertheless,the necessity of magnetic excitation to saturation due to the use of a secondary coil for signal detection,keeps from its engineering application.In this paper,a smart elasto-magneto-electric (EME) sensor using magneto-electric (ME) sensing units to take the place of the secondary coil has been exploited for the first time.The ME sensing unit is made of ME laminated composites,which has an ultrahigh ME voltage coefficient and can measure the magnetic induction simply and precisely.Theoretical analysis and characterization experiments firstly conducted on the ME laminated composites showed that the ME sensing units can be applied in the EM sensor for improved performance in stress monitoring.A tension test of a steel bar was carried out to characterize our smart EME sensor and the results showed high accuracy and sensitivity.The present smart EME sensor is a promising tool for stress monitoring of steel structures in railway and other civil infrastructures.展开更多
We propose and investigate a methodology based on convolved electric and magnetic currents for the generation of multi-band responses over a space-shared radiating surface.First,a single wideband antenna operation pri...We propose and investigate a methodology based on convolved electric and magnetic currents for the generation of multi-band responses over a space-shared radiating surface.First,a single wideband antenna operation principle based on inter-leaved dipole and slot modes is studied and analyzed using full-wave simulations followed by a qualitative time domain analysis.Subsequently,a 2×2 dual-band radiating unit is conceived and developed by closely arranging single wideband antennas.In this case,multimode resonances are generated in a lower frequency band by a proper convolving and coupling of the magnetic and electric currents realized in the gaps between the antennas and on the surface of the antennas,respectively.This methodology can be deployed repeatedly to build up a self-scalable topology by reusing the electromagnetically(EM)connected radiating surfaces and gaps be-tween the radiating units.Due to the efficient reuse of the electromagnetic region for the development of multiband radiation,a high aperture-reuse efficiency is achieved.Finally,as a proof of concept,a 2×4 dual-band array operating in Ku-and Ka-bands is devel-oped and fabricated by a linear arrangement of the two developed radiating units.Our measurement results show that the proposed antenna array provides impedance and gain bandwidths of 30%and 25.4%in the Ku-band and 10.65%and 8.52%in the Ka-band,respectively.展开更多
Lightweight,scalable,mechanically flexible conductive polymer composite was always desirable for electromagnetic interference(EMI)shielding applications.In this work,we showcased a novel approach to the superior EMI s...Lightweight,scalable,mechanically flexible conductive polymer composite was always desirable for electromagnetic interference(EMI)shielding applications.In this work,we showcased a novel approach to the superior EMI shielding composite materials by orchestrating the multilayered structure and synergistic system.The asymmetric structure with the carbonyl irons(CI)-rich Ti_(3)C_(2)T_(x)/poly(vinylidene fluoride)(PVDF)magneto-electric layer jointly behind the Ti_(3)C_(2)T_(x) nanosheets filled PVDF layer was designed and fabricated with the aid of a facile but efficient magnetic field-induced method and was then hotpressed into a multilayer structured film.Ti_(3)C_(2)T_(x) nanosheets were excluded by CI agglomeration layer in the asymmetric film to form the complete 3D electrical conductive skeletons.Based on this strategy,EMI shielding properties of the asymmetric multilayer structured composite was superior to the homogeneous blend and sandwiched or alternating layered composites.In addition,an increase in CI content in the composite referred to the thickening of CI-rich layers,making it gain the most powerful EMI SE values,i.e.42.8 d B for DCMP20–10 film(20 wt%CI,10 wt%Ti_(3)C_(2)T_(x))at a thickness of 0.4 mm.More importantly,the composite transformed from a reflection type to an absorption dominating EMI shielding material due to the multireflections and magneto-electric synergism in the CI-rich Ti_(3)C_(2)T_(x)/PVDF layers.Meanwhile,the EMI SE of the composites can be adjusted by increase of either theoverall thickness,or the layer numbers of m-DCMP sheets.The thickness specific EMI SE was calculated as 165.25 d B mm^(-1)for 4-sheet composite film,a record high value among the high efficiency polymer-based EMI shielding materials.This method offered an alternative protocol for preferential integration of excellent EMI shielding performance with high mechanical performance in CPC materials.展开更多
Dark matter is a major component of the universe, about six times more abundant than ordinary visible matter. We measure the effects of its mass, but it escapes the telescopes. It has the particularity of emitting no ...Dark matter is a major component of the universe, about six times more abundant than ordinary visible matter. We measure the effects of its mass, but it escapes the telescopes. It has the particularity of emitting no radiation and interacting only by the action of gravity. The main purpose of this article is to try to answer what dark matter is: we conjecture that it is composed of magnetically charged neutrinos, true magnetic monopoles. But that requires a huge conceptual leap: Maxwell’s laws must be inverted and the electric charge becomes a magnetic charge. Asymmetric “reversed” Maxwell’s laws would provide the “dark” magnetic charge that would replace the electric charge. The very form of the Dirac equation, which imposed on ordinary matter that the particle carries an electric charge and obeys the principal properties of the electron, would impose in the dark matter that the “dark” particle obeys the main properties of a neutrino associated with a magnetic charge. The second aim of the article is to show that dark matter is derived from black holes, mainly from active supermassive black holes. This requires a second conceptual leap: the horizon of the black hole undergoes a high temperature and an intense pressure of magnetic fields which cause a blackout and a phase transition (or broken symmetry) when the matter crosses the horizon. The result is a reversal of Maxwell’s laws: a magnetic charge is substituted for the electric charge, and the electric current becomes a tributary of the magnetic current. A third important conceptual leap follows: sterile magnetic neutrinos created inside the black hole would cross the horizon to the outside to constitute dark matter.展开更多
Magneto-electric properties of the magnetic domains local areas of bismuth-substituted yttrium iron garnet films are investigated. The electromagneto-optical (EMO) scanning method was used in our experiments when prob...Magneto-electric properties of the magnetic domains local areas of bismuth-substituted yttrium iron garnet films are investigated. The electromagneto-optical (EMO) scanning method was used in our experiments when probing by laser beam various sites of separate magnetic domains of the film. Registered in our experiments the nonlinear and linear components of EMO effect does not remain to constants at optical scanning of various points of the magnetic domain. I.e. the local EMOE picture from the separate sites of the domain must be more informative than an averaged one in the multidomain case.展开更多
The magneto-electric effect in magnetic materials has been widely investigated, but obtaining an enhanced magnetoelectric effect is challenging. In this study, tricolor superlattices composed of manganese oxides-Pr(...The magneto-electric effect in magnetic materials has been widely investigated, but obtaining an enhanced magnetoelectric effect is challenging. In this study, tricolor superlattices composed of manganese oxides-Pr(0.9)Ca(0.1)MnO3,La(0.9)Sr(0.1)MnO3, and La(0.9)Sb(0.1)MnO3-on(001)-oriented Nb:SrTiO3 substrates with broken space-inversion and timereversal symmetries are designed. Regarding the electric polarization in the hysteresis loops of the superlattices at different external magnetic fields, both coercive electric field Ec and remnant polarization intensity Pr clearly show strong magneticfield dependences. At low temperatures(〈 120 K), a considerable magneto-electric effect in the well-defined tricolor superlattice is observed that is absent in the single compounds. Both maxima of the magneto-electric coupling coefficients ?Ec and ?Pr appear at 30 K. The magnetic dependence of the dielectric constant further supports the magneto-electric effect. Moreover, a dependence of the magneto-electric effect on the periodicity of the superlattices with various structures is observed, which indicates the importance of interfaces. Our experimental results verify previous theoretical results regarding magneto-electric interactions, thereby paving the way for the design and development of novel magneto-electric devices based on manganite ferromagnets.展开更多
The Bi_(2)Fe_(2)WO_(9) ceramic was prepared using a standard solid-state reaction technique.Preliminary analysis of X-ray diffraction pattern revealed the formation of single-phase compound with orthorhombic crystal s...The Bi_(2)Fe_(2)WO_(9) ceramic was prepared using a standard solid-state reaction technique.Preliminary analysis of X-ray diffraction pattern revealed the formation of single-phase compound with orthorhombic crystal symmetry.The surface morphology of the material captured using scanning electron microscope(SEM)exhibits formation of a densely packed microstructure.Comprehensive study of dielectric properties showed two anomalies at 200℃and 450℃:first one may be related to magnetic whereas second one may be related to ferroelectric phase transition.The field dependent magnetic study of the material shows the existence of small remnant magnetization(M_(r))of 0.052 emμ/g at room temperature.The existence of magneto-electric(ME)coupling coefficient along with above properties confirms multi-ferroic characteristics of the compound.Selected range temperature and frequency dependent electrical parameters(impedance,modulus,conductivity)of the compound shows that electric properties are correlated to its microstructure.Detailed studies of frequency dependence of ac conductivity suggest that the material obeys Jonscher's universal power law.展开更多
该文设计了一种低雷达散射截面(RCS)的宽带磁电偶极子贴片天线,其中印刷在介质板上的金属贴片为电偶极子,3个金属过孔连接辐射贴片与金属地板构成磁偶极子。整个天线采用"T"型渐变馈电结构同时激励电偶极子与磁偶极子,天线的频带范...该文设计了一种低雷达散射截面(RCS)的宽带磁电偶极子贴片天线,其中印刷在介质板上的金属贴片为电偶极子,3个金属过孔连接辐射贴片与金属地板构成磁偶极子。整个天线采用"T"型渐变馈电结构同时激励电偶极子与磁偶极子,天线的频带范围为7.81~13.65 GHz,覆盖了整个X波段。实测和仿真结果表明,通过在磁电偶极子贴片天线底面采用开槽技术并优化开槽的形状、大小、位置等变量,在天线工作频带范围内实现了RCS的减缩,最大缩减量达到了17.9 d B,同时天线保持了增益稳定不变,E面、H面方向图一致的特性。展开更多
基金We are thankful to the financial support from the National Natural Science Foundation of China(grant No.51971111)Innovation Project of Nanjing University of Aeronautics and Astronautics(grant No.xcxjh20210604)。
文摘Nanocomposites with heterogeneous structures and magneto-electric synergistic losses have broad prospects for improving electromagnetic wave(EMW)absorption performance.In this study,we synthesized Co_(2)NiO_(4)@MnCo_(2)O_(4.5)nanoparticles with abundant hetero-interfaces and multiple magnetoelectric loss mechanisms by a facile hydrothermal method.The excess 0.5 oxygen atoms in MnCo_(2)O_(4.5) produce more vacancies and contribute to the enhancement of electrical conductivity.Sequential nanoneedle clusters facilitate multiple reflections and absorption of EMW in the materials,which are accompanied by an abundance of heterogeneous interfaces to improve the dielectric loss.The Co_(2)NiO_(4)@MnCo_(2)O_(4.5)composites showed a minimum reflection loss(RLmin)of30.01 dB and a superior effective absorption bandwidth(EAB)of 6.12 GHz(11.88 GHze18 GHz)at a thickness of 2.00 mm.Computer Simulation Technology(CST)revealed that the obtained particles show very low radar crosssection(RCS)values and almost full coverage angles.The maximum reduction of RCS at vertical incidence reaches 19.98 dB m2.The Co_(2)NiO_(4)@MnCo_(2)O_(4.5)nanoparticles exhibit outstanding radar attenuation properties,which can effectively inhibit the reflection and scattering of EMW.Therefore,the prepared Co_(2)NiO_(4)@MnCo_(2)O_(4.5)absorbers have great application potential in the field of EMW absorption.
基金Project supported by the National Natural Science Foundation of China(Nos.50908202,51178426,90915008,and 60801011)the Zhejiang Provincial Natural Science Foundation,China(No.Y1090382)+1 种基金the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(No.122012)the Key Science and Technology Innovation Team Program of Zhejiang Province,China(No.2010R50034)
文摘Steel structures are widely used in railway infrastructures.Their stress state is the most important determinant of the safety of these structures.The elasto-magnetic (EM) sensor is the most promising for stress monitoring of in-service steel structures.Nevertheless,the necessity of magnetic excitation to saturation due to the use of a secondary coil for signal detection,keeps from its engineering application.In this paper,a smart elasto-magneto-electric (EME) sensor using magneto-electric (ME) sensing units to take the place of the secondary coil has been exploited for the first time.The ME sensing unit is made of ME laminated composites,which has an ultrahigh ME voltage coefficient and can measure the magnetic induction simply and precisely.Theoretical analysis and characterization experiments firstly conducted on the ME laminated composites showed that the ME sensing units can be applied in the EM sensor for improved performance in stress monitoring.A tension test of a steel bar was carried out to characterize our smart EME sensor and the results showed high accuracy and sensitivity.The present smart EME sensor is a promising tool for stress monitoring of steel structures in railway and other civil infrastructures.
文摘We propose and investigate a methodology based on convolved electric and magnetic currents for the generation of multi-band responses over a space-shared radiating surface.First,a single wideband antenna operation principle based on inter-leaved dipole and slot modes is studied and analyzed using full-wave simulations followed by a qualitative time domain analysis.Subsequently,a 2×2 dual-band radiating unit is conceived and developed by closely arranging single wideband antennas.In this case,multimode resonances are generated in a lower frequency band by a proper convolving and coupling of the magnetic and electric currents realized in the gaps between the antennas and on the surface of the antennas,respectively.This methodology can be deployed repeatedly to build up a self-scalable topology by reusing the electromagnetically(EM)connected radiating surfaces and gaps be-tween the radiating units.Due to the efficient reuse of the electromagnetic region for the development of multiband radiation,a high aperture-reuse efficiency is achieved.Finally,as a proof of concept,a 2×4 dual-band array operating in Ku-and Ka-bands is devel-oped and fabricated by a linear arrangement of the two developed radiating units.Our measurement results show that the proposed antenna array provides impedance and gain bandwidths of 30%and 25.4%in the Ku-band and 10.65%and 8.52%in the Ka-band,respectively.
基金the financial grant provided by the State Key Program of National Natural Science foundation of China(Grant No.51433008)Shenzhen Science and Technology Innovation Commission(Grant No.JCYJ20160331142330969)。
文摘Lightweight,scalable,mechanically flexible conductive polymer composite was always desirable for electromagnetic interference(EMI)shielding applications.In this work,we showcased a novel approach to the superior EMI shielding composite materials by orchestrating the multilayered structure and synergistic system.The asymmetric structure with the carbonyl irons(CI)-rich Ti_(3)C_(2)T_(x)/poly(vinylidene fluoride)(PVDF)magneto-electric layer jointly behind the Ti_(3)C_(2)T_(x) nanosheets filled PVDF layer was designed and fabricated with the aid of a facile but efficient magnetic field-induced method and was then hotpressed into a multilayer structured film.Ti_(3)C_(2)T_(x) nanosheets were excluded by CI agglomeration layer in the asymmetric film to form the complete 3D electrical conductive skeletons.Based on this strategy,EMI shielding properties of the asymmetric multilayer structured composite was superior to the homogeneous blend and sandwiched or alternating layered composites.In addition,an increase in CI content in the composite referred to the thickening of CI-rich layers,making it gain the most powerful EMI SE values,i.e.42.8 d B for DCMP20–10 film(20 wt%CI,10 wt%Ti_(3)C_(2)T_(x))at a thickness of 0.4 mm.More importantly,the composite transformed from a reflection type to an absorption dominating EMI shielding material due to the multireflections and magneto-electric synergism in the CI-rich Ti_(3)C_(2)T_(x)/PVDF layers.Meanwhile,the EMI SE of the composites can be adjusted by increase of either theoverall thickness,or the layer numbers of m-DCMP sheets.The thickness specific EMI SE was calculated as 165.25 d B mm^(-1)for 4-sheet composite film,a record high value among the high efficiency polymer-based EMI shielding materials.This method offered an alternative protocol for preferential integration of excellent EMI shielding performance with high mechanical performance in CPC materials.
文摘Dark matter is a major component of the universe, about six times more abundant than ordinary visible matter. We measure the effects of its mass, but it escapes the telescopes. It has the particularity of emitting no radiation and interacting only by the action of gravity. The main purpose of this article is to try to answer what dark matter is: we conjecture that it is composed of magnetically charged neutrinos, true magnetic monopoles. But that requires a huge conceptual leap: Maxwell’s laws must be inverted and the electric charge becomes a magnetic charge. Asymmetric “reversed” Maxwell’s laws would provide the “dark” magnetic charge that would replace the electric charge. The very form of the Dirac equation, which imposed on ordinary matter that the particle carries an electric charge and obeys the principal properties of the electron, would impose in the dark matter that the “dark” particle obeys the main properties of a neutrino associated with a magnetic charge. The second aim of the article is to show that dark matter is derived from black holes, mainly from active supermassive black holes. This requires a second conceptual leap: the horizon of the black hole undergoes a high temperature and an intense pressure of magnetic fields which cause a blackout and a phase transition (or broken symmetry) when the matter crosses the horizon. The result is a reversal of Maxwell’s laws: a magnetic charge is substituted for the electric charge, and the electric current becomes a tributary of the magnetic current. A third important conceptual leap follows: sterile magnetic neutrinos created inside the black hole would cross the horizon to the outside to constitute dark matter.
文摘Magneto-electric properties of the magnetic domains local areas of bismuth-substituted yttrium iron garnet films are investigated. The electromagneto-optical (EMO) scanning method was used in our experiments when probing by laser beam various sites of separate magnetic domains of the film. Registered in our experiments the nonlinear and linear components of EMO effect does not remain to constants at optical scanning of various points of the magnetic domain. I.e. the local EMOE picture from the separate sites of the domain must be more informative than an averaged one in the multidomain case.
基金Project supported by the National Natural Science Foundation of China(Grant No.61471301)
文摘The magneto-electric effect in magnetic materials has been widely investigated, but obtaining an enhanced magnetoelectric effect is challenging. In this study, tricolor superlattices composed of manganese oxides-Pr(0.9)Ca(0.1)MnO3,La(0.9)Sr(0.1)MnO3, and La(0.9)Sb(0.1)MnO3-on(001)-oriented Nb:SrTiO3 substrates with broken space-inversion and timereversal symmetries are designed. Regarding the electric polarization in the hysteresis loops of the superlattices at different external magnetic fields, both coercive electric field Ec and remnant polarization intensity Pr clearly show strong magneticfield dependences. At low temperatures(〈 120 K), a considerable magneto-electric effect in the well-defined tricolor superlattice is observed that is absent in the single compounds. Both maxima of the magneto-electric coupling coefficients ?Ec and ?Pr appear at 30 K. The magnetic dependence of the dielectric constant further supports the magneto-electric effect. Moreover, a dependence of the magneto-electric effect on the periodicity of the superlattices with various structures is observed, which indicates the importance of interfaces. Our experimental results verify previous theoretical results regarding magneto-electric interactions, thereby paving the way for the design and development of novel magneto-electric devices based on manganite ferromagnets.
文摘The Bi_(2)Fe_(2)WO_(9) ceramic was prepared using a standard solid-state reaction technique.Preliminary analysis of X-ray diffraction pattern revealed the formation of single-phase compound with orthorhombic crystal symmetry.The surface morphology of the material captured using scanning electron microscope(SEM)exhibits formation of a densely packed microstructure.Comprehensive study of dielectric properties showed two anomalies at 200℃and 450℃:first one may be related to magnetic whereas second one may be related to ferroelectric phase transition.The field dependent magnetic study of the material shows the existence of small remnant magnetization(M_(r))of 0.052 emμ/g at room temperature.The existence of magneto-electric(ME)coupling coefficient along with above properties confirms multi-ferroic characteristics of the compound.Selected range temperature and frequency dependent electrical parameters(impedance,modulus,conductivity)of the compound shows that electric properties are correlated to its microstructure.Detailed studies of frequency dependence of ac conductivity suggest that the material obeys Jonscher's universal power law.
文摘该文设计了一种低雷达散射截面(RCS)的宽带磁电偶极子贴片天线,其中印刷在介质板上的金属贴片为电偶极子,3个金属过孔连接辐射贴片与金属地板构成磁偶极子。整个天线采用"T"型渐变馈电结构同时激励电偶极子与磁偶极子,天线的频带范围为7.81~13.65 GHz,覆盖了整个X波段。实测和仿真结果表明,通过在磁电偶极子贴片天线底面采用开槽技术并优化开槽的形状、大小、位置等变量,在天线工作频带范围内实现了RCS的减缩,最大缩减量达到了17.9 d B,同时天线保持了增益稳定不变,E面、H面方向图一致的特性。