The magnetic dipole transitions between the vector mesons B-c and their relevant pseudoscalar mesons B c (B c ,B-c ,B c (2S ),B-c (2S ),B c (3S ),B-c (3S ) etc.,the binding states of (c) system) of the B c family ar...The magnetic dipole transitions between the vector mesons B-c and their relevant pseudoscalar mesons B c (B c ,B-c ,B c (2S ),B-c (2S ),B c (3S ),B-c (3S ) etc.,the binding states of (c) system) of the B c family are interesting.The ‘hyperfine’ splitting due to spin-spin interaction is an important topic for understanding the spin-spin interaction and the spectrum of the the (c) binding system.The knowledge about the magnetic dipole transitions is also very useful for identifying the vector boson B-c mesons experimentally,whose masses are just slightly above the masses of their relevant pseudoscalar mesons B c .Considering the possibility to observe the vector mesons via the transitions at Z 0 factory and the potential use of the theoretical estimate on the transitions,we fucus our efforts on calculating the magnetic dipole transitions,i.e.a precise calculation of the rates for the transitions such as decays B-c → B c γ and B-c → B c e + e-,and particularly work in the Bethe-Salpeter framework.As a typical example,we carefully investigate the dependence of the rate Γ(B-c → B c γ) on the mass difference ΔM = M B-c-M B c .展开更多
Measurements of magnetic and transport properties were performed on needle-shaped single crystals of Ce_(12)Fe_(57.5)As_(41)and La_(12)Fe_(57.5)As_(41).The availability of a complete set of data enabled a side-by-side...Measurements of magnetic and transport properties were performed on needle-shaped single crystals of Ce_(12)Fe_(57.5)As_(41)and La_(12)Fe_(57.5)As_(41).The availability of a complete set of data enabled a side-by-side comparison between these two rare earth compounds.Both compounds exhibited multiple magnetic orders within 2-300 K and metamagnetic transitions at various fields.Ferromagnetic transitions with Curie temperatures of 100 and 125 K were found for Ce_(12)Fe_(57.5)As_(41)and La_(12)Fe_(57.5)As_(41),respectively,followed by antiferromagnetic type spin reorientations near Curie temperatures.The magnetic properties underwent complex evolution in the magnetic field for both compounds.An antiferromagnetic phase transition at about 60 K and 0.2 T was observed merely for Ce_(12)Fe_(57.5)As_(41).The field-induced magnetic phase transition occurred from antiferromagnetic to ferromagnetic structure.A strong magnetocrystalline anisotropy was evident from magnetization measurements of Ce_(12)Fe_(57.5)As_(41).A temperature-field phase diagram was present for these two rare earth systems.In addition,a logarithmic temperature dependence of electrical resistivity was observed in the two compounds within a large temperature range of 150-300 K,which is rarely found in 3D-based compounds.It may be related to Kondo scattering described by independent localized Fe 3d moments interacting with conduction electrons.展开更多
基金supported by the National Natural Science Foundation of China(52071197)the Science and Technology Commission of Shanghai Municipality(19ZR1418300 and 19DZ2270200)+3 种基金the Independent Research and Development Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2021-Z05)Grant PID2019105720RB-I00 funded by MCIN/AEI/10.13039/501100011033,US/JUNTA/FEDER-UE(US-1260179)Consejería de Economía,Conocimiento,Empresas y Universidad de la Junta de Andalucía(P18-RT-746)the support provided by China Scholarship Council(CSC)of the Ministry of Education,China(202006890050)。
基金supported by the Special Grant for New Faculty from Tianjin Universitypartially supported by the National Natural Science Foundation of China (Grant Nos.10775073,10875032,10875155 and 10847001)the Special Grant for the PH.D Program of the Education Ministry of China
文摘The magnetic dipole transitions between the vector mesons B-c and their relevant pseudoscalar mesons B c (B c ,B-c ,B c (2S ),B-c (2S ),B c (3S ),B-c (3S ) etc.,the binding states of (c) system) of the B c family are interesting.The ‘hyperfine’ splitting due to spin-spin interaction is an important topic for understanding the spin-spin interaction and the spectrum of the the (c) binding system.The knowledge about the magnetic dipole transitions is also very useful for identifying the vector boson B-c mesons experimentally,whose masses are just slightly above the masses of their relevant pseudoscalar mesons B c .Considering the possibility to observe the vector mesons via the transitions at Z 0 factory and the potential use of the theoretical estimate on the transitions,we fucus our efforts on calculating the magnetic dipole transitions,i.e.a precise calculation of the rates for the transitions such as decays B-c → B c γ and B-c → B c e + e-,and particularly work in the Bethe-Salpeter framework.As a typical example,we carefully investigate the dependence of the rate Γ(B-c → B c γ) on the mass difference ΔM = M B-c-M B c .
基金supported by the National Natural Science Foundation of China(Grant Nos.11674375,and 11634015)the National Basic Research Program of China(Grant Nos.2015CB921300,and 2017YFA0302901)and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07020200)
文摘Measurements of magnetic and transport properties were performed on needle-shaped single crystals of Ce_(12)Fe_(57.5)As_(41)and La_(12)Fe_(57.5)As_(41).The availability of a complete set of data enabled a side-by-side comparison between these two rare earth compounds.Both compounds exhibited multiple magnetic orders within 2-300 K and metamagnetic transitions at various fields.Ferromagnetic transitions with Curie temperatures of 100 and 125 K were found for Ce_(12)Fe_(57.5)As_(41)and La_(12)Fe_(57.5)As_(41),respectively,followed by antiferromagnetic type spin reorientations near Curie temperatures.The magnetic properties underwent complex evolution in the magnetic field for both compounds.An antiferromagnetic phase transition at about 60 K and 0.2 T was observed merely for Ce_(12)Fe_(57.5)As_(41).The field-induced magnetic phase transition occurred from antiferromagnetic to ferromagnetic structure.A strong magnetocrystalline anisotropy was evident from magnetization measurements of Ce_(12)Fe_(57.5)As_(41).A temperature-field phase diagram was present for these two rare earth systems.In addition,a logarithmic temperature dependence of electrical resistivity was observed in the two compounds within a large temperature range of 150-300 K,which is rarely found in 3D-based compounds.It may be related to Kondo scattering described by independent localized Fe 3d moments interacting with conduction electrons.