This work reports the adsorption of crystal violet (CV) dye onto magnetic zeolite (MZ) nanoparticles, synthesized by direct fusion of fly ash (FA) and magnetite particles. The synthesised MZ showed high capacity for C...This work reports the adsorption of crystal violet (CV) dye onto magnetic zeolite (MZ) nanoparticles, synthesized by direct fusion of fly ash (FA) and magnetite particles. The synthesised MZ showed high capacity for CV dye adsorption, removing 95% of the dye at an equilibrium adsorption time of 10 min and 25℃. The effects of adsorbent dosage, dye concentration, and pH, on adsorption were evaluated. Adsorption data were best described by the Langmuir adsorption isotherm (R2 = 0.9986), while the adsorption kinetics was best fitted by the pseudo-second-order kinetic model (R2 = 0.9999). Application of the MZs synthesised from inexpensive resources such as FA could ensure the sustainability and cost effectiveness of treating industrial effluent containing basic dyes, especially effluent from the textile industries.展开更多
The electrical conductivity, compression sensibility, workability and cost are factors that affect the application of conductive smart materials in civil structures. Consequently, the resistance and compression sensib...The electrical conductivity, compression sensibility, workability and cost are factors that affect the application of conductive smart materials in civil structures. Consequently, the resistance and compression sensibility of magnetic-concentrated fly ash (MCFA) mortar were investigated using two electrode method, and the difference of compression sensibility between MCFA mortar and carbon fiber reinforced cement (CFRC) under uniaxial loading was studied. Factors affecting the compression sensibility of MCFA mortar, such as MCFA content, loading rate and stress cycles, were analyzed. Results show that fly ash with high content of Fe3O4 can be used to prepare conductive mortar since Fe3O4 is a kind of nonstoichiometric oxide and usually acts as semiconductor. MCFA mortar exhibits the same electrical conductivity to that of CFRC when the content of MCFA is more than 40% by weight of sample. The compression sensibility of mortar is improved with the increase of MCFA content and loading rate. The compression sensibility of MCFA mortar is reversible with the circling of loading. Results show that the application of MCFA in concrete not only provides excellent performances of electrical-functionality and workability, but also reduces the cost of conductive concrete.展开更多
文摘This work reports the adsorption of crystal violet (CV) dye onto magnetic zeolite (MZ) nanoparticles, synthesized by direct fusion of fly ash (FA) and magnetite particles. The synthesised MZ showed high capacity for CV dye adsorption, removing 95% of the dye at an equilibrium adsorption time of 10 min and 25℃. The effects of adsorbent dosage, dye concentration, and pH, on adsorption were evaluated. Adsorption data were best described by the Langmuir adsorption isotherm (R2 = 0.9986), while the adsorption kinetics was best fitted by the pseudo-second-order kinetic model (R2 = 0.9999). Application of the MZs synthesised from inexpensive resources such as FA could ensure the sustainability and cost effectiveness of treating industrial effluent containing basic dyes, especially effluent from the textile industries.
基金the National Natural Science Foundation of China(No.51002193)
文摘The electrical conductivity, compression sensibility, workability and cost are factors that affect the application of conductive smart materials in civil structures. Consequently, the resistance and compression sensibility of magnetic-concentrated fly ash (MCFA) mortar were investigated using two electrode method, and the difference of compression sensibility between MCFA mortar and carbon fiber reinforced cement (CFRC) under uniaxial loading was studied. Factors affecting the compression sensibility of MCFA mortar, such as MCFA content, loading rate and stress cycles, were analyzed. Results show that fly ash with high content of Fe3O4 can be used to prepare conductive mortar since Fe3O4 is a kind of nonstoichiometric oxide and usually acts as semiconductor. MCFA mortar exhibits the same electrical conductivity to that of CFRC when the content of MCFA is more than 40% by weight of sample. The compression sensibility of mortar is improved with the increase of MCFA content and loading rate. The compression sensibility of MCFA mortar is reversible with the circling of loading. Results show that the application of MCFA in concrete not only provides excellent performances of electrical-functionality and workability, but also reduces the cost of conductive concrete.