The human cardiovascular system is a closed- loop and complex vascular network with multi-scaled het- erogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling...The human cardiovascular system is a closed- loop and complex vascular network with multi-scaled het- erogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling, with a focus on geometrical multi-scale model- ing of the vascular network, micro-hemodynamic modeling of microcirculation, as well as blood cellular, subcellular, endothelial biomechanics, and their interaction with arter- ial vessel mechanics. We describe in detail the methodology of hemodynamic modeling and its potential applications in cardiovascular research and clinical practice. In addition, we present major topics for future study: recent progress of patient-specific hemodynamic modeling in clinical applica- tions, micro-hemodynamic modeling in capillaries and blood cells, and the importance and potential of the multi-scale hemodynarnic modeling.展开更多
基金supported by Grant-in-Aid for Scientifi Research(Grant(B)17300141)the Development and Use of the Next Generation Supercomputer Project of the MEXT,Japan+4 种基金Fuyou Liang was supported by the National Natural Science Foundation of China(Grant 81370438)the SJTU Medical Engineering Cross-cutting Research Foundation(Grant YG2012MS24)Ken-iti Tsubota was partly funded by a Grant-in-Aid for Challenging Exploratory Research(Grant 25630046),JSPSsupporting the computing facilities essential for the completion of this studyFinancial support provided by HKUST to JW is acknowledged
文摘The human cardiovascular system is a closed- loop and complex vascular network with multi-scaled het- erogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling, with a focus on geometrical multi-scale model- ing of the vascular network, micro-hemodynamic modeling of microcirculation, as well as blood cellular, subcellular, endothelial biomechanics, and their interaction with arter- ial vessel mechanics. We describe in detail the methodology of hemodynamic modeling and its potential applications in cardiovascular research and clinical practice. In addition, we present major topics for future study: recent progress of patient-specific hemodynamic modeling in clinical applica- tions, micro-hemodynamic modeling in capillaries and blood cells, and the importance and potential of the multi-scale hemodynarnic modeling.