Considering the influence of hydrogen gas generated during electrochemical machining on the conductivity of electrolyte, a two-phase turbulent flow model is presented to describe the gas bubbles distribution.The k-e t...Considering the influence of hydrogen gas generated during electrochemical machining on the conductivity of electrolyte, a two-phase turbulent flow model is presented to describe the gas bubbles distribution.The k-e turbulent model is used to describe the electrolyte flow field.The Euler–Euler model based on viscous drag and pressure force is used to calculate the twodimensional distribution of gas volume fraction.A multi-physics coupling model of electric field,two-phase flow field and temperature field is established and solved by weak coupling iteration method.The numerical simulation results of gas volume fraction, temperature and conductivity in equilibrium state are discussed.The distributions of machining gap at different time are analyzed.The predicted results of the machining gap are consistent with the experimental results, and the maximum deviation between them is less than 50 lm.展开更多
The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and...The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method.展开更多
基金funded by the National Natural Science Foundation of China(Nos.51775161 and 51775158)。
文摘Considering the influence of hydrogen gas generated during electrochemical machining on the conductivity of electrolyte, a two-phase turbulent flow model is presented to describe the gas bubbles distribution.The k-e turbulent model is used to describe the electrolyte flow field.The Euler–Euler model based on viscous drag and pressure force is used to calculate the twodimensional distribution of gas volume fraction.A multi-physics coupling model of electric field,two-phase flow field and temperature field is established and solved by weak coupling iteration method.The numerical simulation results of gas volume fraction, temperature and conductivity in equilibrium state are discussed.The distributions of machining gap at different time are analyzed.The predicted results of the machining gap are consistent with the experimental results, and the maximum deviation between them is less than 50 lm.
文摘The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method.