Computer vision techniques, in conjunction with acquisition through remote cameras and unmanned aerial vehicles (UAVs), offer promising non-contact solutions to civil infrastructure condition assessment. The ultimate ...Computer vision techniques, in conjunction with acquisition through remote cameras and unmanned aerial vehicles (UAVs), offer promising non-contact solutions to civil infrastructure condition assessment. The ultimate goal of such a system is to automatically and robustly convert the image or video data into actionable information. This paper provides an overview of recent advances in computer vision techniques as they apply to the problem of civil infrastructure condition assessment. In particular, relevant research in the fields of computer vision, machine learning, and structural engineering is presented. The work reviewed is classified into two types: inspection applications and monitoring applications. The inspection applications reviewed include identifying context such as structural components, characterizing local and global visible damage, and detecting changes from a reference image. The monitoring applications discussed include static measurement of strain and displacement, as well as dynamic measurement of displacement for modal analysis. Subsequently, some of the key challenges that persist toward the goal of automated vision-based civil infrastructure and monitoring are presented. The paper concludes with ongoing work aimed at addressing some of these stated challenges.展开更多
Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the...Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion.展开更多
With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way fo...With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way for the development of 6G and beyond, we provide 6G visions in this paper. We first introduce the state-of-the-art technologies in 5G and indicate the necessity to study 6G. By taking the current and emerging development of wireless communications into consideration, we envision 6G to include three major aspects, namely, mobile ultra-broadband, super Internet-of-Things(IoT), and artificial intelligence(AI). Then, we review key technologies to realize each aspect. In particular, teraherz(THz) communications can be used to support mobile ultra-broadband, symbiotic radio and satellite-assisted communications can be used to achieve super IoT, and machine learning techniques are promising candidates for AI. For each technology, we provide the basic principle, key challenges, and state-of-the-art approaches and solutions.展开更多
The development of machine learning in complex system is hindered by two problems nowadays.The first problem is the inefficiency of exploration in state and action space,which leads to the data-hungry of some state-of...The development of machine learning in complex system is hindered by two problems nowadays.The first problem is the inefficiency of exploration in state and action space,which leads to the data-hungry of some state-of-art data-driven algorithm.The second problem is the lack of a general theory which can be used to analyze and implement a complex learning system.In this paper,we proposed a general methods that can address both two issues.We combine the concepts of descriptive learning,predictive learning,and prescriptive learning into a uniform framework,so as to build a parallel system allowing learning system improved by self-boosting.Formulating a new perspective of data,knowledge and action,we provide a new methodology called parallel learning to design machine learning system for real-world problems.展开更多
在计算机网络实验室的实践教学中,常常遇到难以满足安装操作系统、组网、测试网络软件等需求的难题。介绍了VMWare的工作原理,分析它的优势和特性,提出基于VMWare建立虚拟网络实验室的思路。通过VMWare创建多个虚拟子系统,在其中安装Li...在计算机网络实验室的实践教学中,常常遇到难以满足安装操作系统、组网、测试网络软件等需求的难题。介绍了VMWare的工作原理,分析它的优势和特性,提出基于VMWare建立虚拟网络实验室的思路。通过VMWare创建多个虚拟子系统,在其中安装Linux、Windows Server 2003等不同种类的操作系统。这些虚拟子系统通过多种方便、灵活的方式进行通讯,形成复杂和多变的测试环境,可以完成各种复杂的网络实验。VMWare在实践中使用方便、性能强大,能很好地满足计算机网络实验室的要求。展开更多
Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorith...Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficultto-program applications, and software applications. It is a collection of a variety of algorithms(e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore,nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.展开更多
Artificial intelligence(AI), particularly deep learning algorithms, is gaining extensive attention for its excellent performance in image-recognition tasks. They can automatically make a quantitative assessment of com...Artificial intelligence(AI), particularly deep learning algorithms, is gaining extensive attention for its excellent performance in image-recognition tasks. They can automatically make a quantitative assessment of complex medical image characteristics and achieve an increased accuracy for diagnosis with higher efficiency. AI is widely used and getting increasingly popular in the medical imaging of the liver, including radiology, ultrasound, and nuclear medicine. AI can assist physicians to make more accurate and reproductive imaging diagnosis and also reduce the physicians' workload. This article illustrates basic technical knowledge about AI, including traditional machine learning and deep learning algorithms, especially convolutional neural networks, and their clinical application in the medical imaging of liver diseases, such as detecting and evaluating focal liver lesions, facilitating treatment, and predicting liver treatment response. We conclude that machine-assisted medical services will be a promising solution for future liver medical care. Lastly, we discuss the challenges and future directions of clinical application of deep learning techniques.展开更多
基金supported in part by funding from the US Army Corps of Engineers under a project entitled ‘‘Cybermodeling: A Digital Surrogate Approach for Optimal Risk-Based Operations and Infrastructure” (W912HZ-17-2-0024)
文摘Computer vision techniques, in conjunction with acquisition through remote cameras and unmanned aerial vehicles (UAVs), offer promising non-contact solutions to civil infrastructure condition assessment. The ultimate goal of such a system is to automatically and robustly convert the image or video data into actionable information. This paper provides an overview of recent advances in computer vision techniques as they apply to the problem of civil infrastructure condition assessment. In particular, relevant research in the fields of computer vision, machine learning, and structural engineering is presented. The work reviewed is classified into two types: inspection applications and monitoring applications. The inspection applications reviewed include identifying context such as structural components, characterizing local and global visible damage, and detecting changes from a reference image. The monitoring applications discussed include static measurement of strain and displacement, as well as dynamic measurement of displacement for modal analysis. Subsequently, some of the key challenges that persist toward the goal of automated vision-based civil infrastructure and monitoring are presented. The paper concludes with ongoing work aimed at addressing some of these stated challenges.
基金the National Natural Science Foundation of China (51638007, 51478149, 51678203,and 51678204).
文摘Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion.
基金supported in part by National Natural Science Foundation of China under Grants 61631005, 61801101, U1801261, and 61571100
文摘With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way for the development of 6G and beyond, we provide 6G visions in this paper. We first introduce the state-of-the-art technologies in 5G and indicate the necessity to study 6G. By taking the current and emerging development of wireless communications into consideration, we envision 6G to include three major aspects, namely, mobile ultra-broadband, super Internet-of-Things(IoT), and artificial intelligence(AI). Then, we review key technologies to realize each aspect. In particular, teraherz(THz) communications can be used to support mobile ultra-broadband, symbiotic radio and satellite-assisted communications can be used to achieve super IoT, and machine learning techniques are promising candidates for AI. For each technology, we provide the basic principle, key challenges, and state-of-the-art approaches and solutions.
基金supported in part by the National Natural Science Foundation of China(91520301)
文摘The development of machine learning in complex system is hindered by two problems nowadays.The first problem is the inefficiency of exploration in state and action space,which leads to the data-hungry of some state-of-art data-driven algorithm.The second problem is the lack of a general theory which can be used to analyze and implement a complex learning system.In this paper,we proposed a general methods that can address both two issues.We combine the concepts of descriptive learning,predictive learning,and prescriptive learning into a uniform framework,so as to build a parallel system allowing learning system improved by self-boosting.Formulating a new perspective of data,knowledge and action,we provide a new methodology called parallel learning to design machine learning system for real-world problems.
文摘在计算机网络实验室的实践教学中,常常遇到难以满足安装操作系统、组网、测试网络软件等需求的难题。介绍了VMWare的工作原理,分析它的优势和特性,提出基于VMWare建立虚拟网络实验室的思路。通过VMWare创建多个虚拟子系统,在其中安装Linux、Windows Server 2003等不同种类的操作系统。这些虚拟子系统通过多种方便、灵活的方式进行通讯,形成复杂和多变的测试环境,可以完成各种复杂的网络实验。VMWare在实践中使用方便、性能强大,能很好地满足计算机网络实验室的要求。
文摘Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficultto-program applications, and software applications. It is a collection of a variety of algorithms(e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore,nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.
文摘Artificial intelligence(AI), particularly deep learning algorithms, is gaining extensive attention for its excellent performance in image-recognition tasks. They can automatically make a quantitative assessment of complex medical image characteristics and achieve an increased accuracy for diagnosis with higher efficiency. AI is widely used and getting increasingly popular in the medical imaging of the liver, including radiology, ultrasound, and nuclear medicine. AI can assist physicians to make more accurate and reproductive imaging diagnosis and also reduce the physicians' workload. This article illustrates basic technical knowledge about AI, including traditional machine learning and deep learning algorithms, especially convolutional neural networks, and their clinical application in the medical imaging of liver diseases, such as detecting and evaluating focal liver lesions, facilitating treatment, and predicting liver treatment response. We conclude that machine-assisted medical services will be a promising solution for future liver medical care. Lastly, we discuss the challenges and future directions of clinical application of deep learning techniques.