We present an equivalent circuit model for a silicon carrier-depletion single-drive push–pull Mach–Zehnder modulator(MZM)with its traveling wave electrode made of coplanar strip lines.In particular,the partialcapaci...We present an equivalent circuit model for a silicon carrier-depletion single-drive push–pull Mach–Zehnder modulator(MZM)with its traveling wave electrode made of coplanar strip lines.In particular,the partialcapacitance technique and conformal mapping are used to derive the capacitance associated with each layer.The PN junction is accurately modeled with the fringe capacitances taken into consideration.The circuit model is validated by comparing the calculations with the simulation results.Using this model,we analyze the effect of several key parameters on the modulator performance to optimize the design.Experimental results of MZMs confirm the theoretical analysis.A 56 Gb/s on–off keying modulation and a 40 Gb/s binary phase-shift keying modulation are achieved using the optimized modulator.展开更多
This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A fig...This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A figure of merit(FoM) is introduced to evaluate the switching response of the PADC when a dual-output Mach–Zehnder modulator(MZM) serves as the photonic switch to parallelize the sampled pulse train into two channels. After the optimization of the FoM and utilization of the channel-mismatch compensation algorithm,the system bandwidth of PADC is expanded and the signal-to-distortion ratio is enhanced.展开更多
Enhancing the spectral quality of the signal without varying the extinction ratio is a challenge for millimeter(MM)wave generation.Here,we propose a novel extinction ratio tolerant frequency 8-tupling technique using ...Enhancing the spectral quality of the signal without varying the extinction ratio is a challenge for millimeter(MM)wave generation.Here,we propose a novel extinction ratio tolerant frequency 8-tupling technique using two Mach-Zehnder modulators(MZMs)with optimal splitting ratio in parallel configuration.Although the proposed technique is not affected by extinction ratio,a high quality MM wave is still obtained with complete unwanted sideband suppression.Two non-ideal MZMs withπ/2 andπphase shifter realize MZM with optimal splitting ratio,which acts as a high extinction ratio modulator.The 80 GHz MM wave with 62 d B optical sideband suppression ratio(OSSR)and 54 d B radio frequency sideband suppression ratio(RSSR)is generated from 10 GHz local oscillator signal at 2.4036 modulation index(MI).Performance of the present work has been evaluated using various MIs,phase drifts and extinction ratios.Sideband suppression ratio(SSR)greater than 10 d B is reported in a wide MI ranging from 2.36 to 2.47.Further,both the SSRs are tolerant towards MZM extinction ratio.The work is ideal for wavelength division multiplexing(WDM)applications due to its filterless characteristics.展开更多
A broadband photonic analog-to-digital converter(ADC) for X-band radar applications is proposed and experimentally demonstrated. An X-band signal with arbitrary waveform and a bandwidth up to 2 GHz can be synchronou...A broadband photonic analog-to-digital converter(ADC) for X-band radar applications is proposed and experimentally demonstrated. An X-band signal with arbitrary waveform and a bandwidth up to 2 GHz can be synchronously sampled and processed due to the optical sampling structure. In the experiment, the chirp signal centered at 9 GHz with a bandwidth of 1.6 GHz is sampled and down-converted with a signal-to-noise ratio of 7.20 d B and an improved noise figure. Adopting the photonic ADC in the radar receiver and the above signal as the transmitted radar signal, an X-band inverse synthetic aperture radar system is set up, and the range and cross-range resolutions of 9.4 and 8.3 cm are obtained, respectively.展开更多
In this paper, several photonic generating methods for optical triangular pulses were reviewed. Four frontier research methods for generating optical triangular pulses were introduced, these four methods are respectiv...In this paper, several photonic generating methods for optical triangular pulses were reviewed. Four frontier research methods for generating optical triangular pulses were introduced, these four methods are respectively based on the frequency-to-time conversion, using normally dispersive fiber, by single-stage dual-drive Mach-Zehnder modulator (MZM), and using dual-parallel MZM. These four methods can be classified into two categories in terms of the optical source employed, such as mode-lock laser (MLL) and continuous-wave (CW) respectively. Compared with the methods based on MLL, those based on CW have many advantages, such as simpler structure, lower price, higher stability, more flexible and wider tunability. Besides, the method using single-stage drive MZM can generate versatile waveform optical pulses, which has better performance than the first two methods in tunable capability of both repetition rate and center wavelength. With the same driving signal applied, the optical source using the dual-parallel MZM can generate signal with higher frequency than that of using the single-stage MZM.展开更多
The Major ana zero mode(MZM), which manifests as an exotic neutral excitation in superconductors, is the building block of topological quantum computing. It has recently been found in the vortices of several iron-base...The Major ana zero mode(MZM), which manifests as an exotic neutral excitation in superconductors, is the building block of topological quantum computing. It has recently been found in the vortices of several iron-based superconductors as a zero-bias conductance peak in tunneling spectroscopy. In particular, a clean and robust MZM has been observed in the cores of free vortices in(Li_(0.84)Fe_(0.16))OHFeSe. Here using scanning tunneling spectroscopy, we demonstrate that Major ana-induced resonant Andreev reflection occurs between the STM tip and this zero-bias bound state,and consequently, the conductance at zero bias is quantized as 2e^2/h. Our results present a hallmark signature of the MZM in the vortex of an intrinsic topological superconductor, together with its intriguing behavior.展开更多
A tunable frequency-multiplying optoelectronic oscillator(OEO) based on a dual-parallel Mach-Zehnder modulator(DPMZM) is proposed and experimentally demonstrated. In the proposed system, the tunable fundamental microw...A tunable frequency-multiplying optoelectronic oscillator(OEO) based on a dual-parallel Mach-Zehnder modulator(DPMZM) is proposed and experimentally demonstrated. In the proposed system, the tunable fundamental microware signal is generated by a tunable optoelectronic oscillator incorporating a phase-shifted fiber Bragg grating(PS-FBG). By adjusting the DC bias of the DPMZM, the frequency-doubled microwave signal with a tunable frequency range from 11 GHz to 20 GHz and the frequency-quadrupled microwave signal with a tunable frequency range from 22.5 GHz to 26 GHz are generated. The phase noises of the fundamental, frequency-doubled and frequency-quadrupled signals at 10 k Hz offset frequency are-105.9 d Bc/Hz,-103.3 d Bc/Hz and-86.2 d Bc/Hz, respectively.展开更多
New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator(MZM) to alter the amplitude of the ligh...New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator(MZM) to alter the amplitude of the light traveling on the slow axis of a fiber into the modulator with little changes in the fast-axis light amplitude.Another is based on adjusting the input DC voltages of a dual-polarization MZM operating in the reverse direction, which enables independent control of the two input orthogonal linearly polarized light amplitudes.Experimental results demonstrate that more than 30 dB difference in slow-and fast-axis light power can be obtained by controlling an MZM input DC voltage, and over 24 dB independent power adjustment for light traveling on the slow and fast axes into a dual-polarization MZM.展开更多
通过理论建模,在中心站利用两级平行的马赫-增德尔调制器(Mach-Zehnder modul at or,MZM)组成一个光载毫米波倍频传输系统,两级MZM的射频驱动信号相位相差为45°。在基站利用PIN光电探测器对光信号进行直接探测,得到了纯度较高且频...通过理论建模,在中心站利用两级平行的马赫-增德尔调制器(Mach-Zehnder modul at or,MZM)组成一个光载毫米波倍频传输系统,两级MZM的射频驱动信号相位相差为45°。在基站利用PIN光电探测器对光信号进行直接探测,得到了纯度较高且频率为射频驱动信号频率8倍的毫米波信号。展开更多
A low phase noise millimeter-wave(MMW) signal generator is proposed and experimentally demonstrated with a C-band passively Fabry-Pérot(F-P) quantum dot mode-locked laser. A novel method is proposed to generate l...A low phase noise millimeter-wave(MMW) signal generator is proposed and experimentally demonstrated with a C-band passively Fabry-Pérot(F-P) quantum dot mode-locked laser. A novel method is proposed to generate low phase noise MMW signal, which is simply based on a commercial off-the-shelf dual-driven Li Nb O3 Mach-Zehnder modulator and a passively F-P quantum dot mode-locked laser. MMW signal with the frequency of 30 GHz, 45 GHz and 90 GHz respectively is obtained experimentally. Single-sideband phase noise of the 30 GHz and 45 GHz MMW signal is-112 d Bc/Hz and-106 d Bc/Hz at an offset of 1 k Hz, respectively. The linewidth of the 30 GHz and 45 GHz MMW signal is about from 225 Hz and 239 Hz. This is considered a very simple MMW generator with a quasi-tunable broadband and ultra-low phase noise.展开更多
The one-dimensional interacting Kitaev chain at half filling is studied. The symmetry of the Hamiltonian is examined by dual transformations, and various physical quantities as a function of the fermion-fermion intera...The one-dimensional interacting Kitaev chain at half filling is studied. The symmetry of the Hamiltonian is examined by dual transformations, and various physical quantities as a function of the fermion-fermion interaction U are calculated systematically using the density matrix renormalization group method. A special value of interaction Up is revealed in the topological region of the phase diagram. We show that at Up the ground states are strictly two-fold degenerate even though the chain length is finite and the zero-energy peak due to the Majorana zero modes is maximally enhanced and exactly localized at the end sites. Here Up may be attractive or repulsive depending on other system parameters. We also give a qualitative understanding of the effect of interaction under the self-consistent mean field framework.展开更多
基金National Natural Science Foundation of China(NSFC)(61422508,61535006,61661130155)Shanghai Rising-Star Program(14QA1402600)
文摘We present an equivalent circuit model for a silicon carrier-depletion single-drive push–pull Mach–Zehnder modulator(MZM)with its traveling wave electrode made of coplanar strip lines.In particular,the partialcapacitance technique and conformal mapping are used to derive the capacitance associated with each layer.The PN junction is accurately modeled with the fringe capacitances taken into consideration.The circuit model is validated by comparing the calculations with the simulation results.Using this model,we analyze the effect of several key parameters on the modulator performance to optimize the design.Experimental results of MZMs confirm the theoretical analysis.A 56 Gb/s on–off keying modulation and a 40 Gb/s binary phase-shift keying modulation are achieved using the optimized modulator.
基金partially supported by the National Natural Science Foundation of China(Nos.61822508,61571292,and 61535006)
文摘This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A figure of merit(FoM) is introduced to evaluate the switching response of the PADC when a dual-output Mach–Zehnder modulator(MZM) serves as the photonic switch to parallelize the sampled pulse train into two channels. After the optimization of the FoM and utilization of the channel-mismatch compensation algorithm,the system bandwidth of PADC is expanded and the signal-to-distortion ratio is enhanced.
文摘Enhancing the spectral quality of the signal without varying the extinction ratio is a challenge for millimeter(MM)wave generation.Here,we propose a novel extinction ratio tolerant frequency 8-tupling technique using two Mach-Zehnder modulators(MZMs)with optimal splitting ratio in parallel configuration.Although the proposed technique is not affected by extinction ratio,a high quality MM wave is still obtained with complete unwanted sideband suppression.Two non-ideal MZMs withπ/2 andπphase shifter realize MZM with optimal splitting ratio,which acts as a high extinction ratio modulator.The 80 GHz MM wave with 62 d B optical sideband suppression ratio(OSSR)and 54 d B radio frequency sideband suppression ratio(RSSR)is generated from 10 GHz local oscillator signal at 2.4036 modulation index(MI).Performance of the present work has been evaluated using various MIs,phase drifts and extinction ratios.Sideband suppression ratio(SSR)greater than 10 d B is reported in a wide MI ranging from 2.36 to 2.47.Further,both the SSRs are tolerant towards MZM extinction ratio.The work is ideal for wavelength division multiplexing(WDM)applications due to its filterless characteristics.
基金supported in part by the National Natural Science Foundation of China(NSFC)(Nos.61690191,61690192,61420106003,and 61621064)Chuanxin Funding,and Beijing Natural Science Foundation(No.4172027)
文摘A broadband photonic analog-to-digital converter(ADC) for X-band radar applications is proposed and experimentally demonstrated. An X-band signal with arbitrary waveform and a bandwidth up to 2 GHz can be synchronously sampled and processed due to the optical sampling structure. In the experiment, the chirp signal centered at 9 GHz with a bandwidth of 1.6 GHz is sampled and down-converted with a signal-to-noise ratio of 7.20 d B and an improved noise figure. Adopting the photonic ADC in the radar receiver and the above signal as the transmitted radar signal, an X-band inverse synthetic aperture radar system is set up, and the range and cross-range resolutions of 9.4 and 8.3 cm are obtained, respectively.
基金This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 61275076, 61177069).
文摘In this paper, several photonic generating methods for optical triangular pulses were reviewed. Four frontier research methods for generating optical triangular pulses were introduced, these four methods are respectively based on the frequency-to-time conversion, using normally dispersive fiber, by single-stage dual-drive Mach-Zehnder modulator (MZM), and using dual-parallel MZM. These four methods can be classified into two categories in terms of the optical source employed, such as mode-lock laser (MLL) and continuous-wave (CW) respectively. Compared with the methods based on MLL, those based on CW have many advantages, such as simpler structure, lower price, higher stability, more flexible and wider tunability. Besides, the method using single-stage drive MZM can generate versatile waveform optical pulses, which has better performance than the first two methods in tunable capability of both repetition rate and center wavelength. With the same driving signal applied, the optical source using the dual-parallel MZM can generate signal with higher frequency than that of using the single-stage MZM.
基金Supported by the National Natural Science Foundation of Chinathe National Key R&D Program of China under Grant Nos2016YFA0300200,2017YFA0303004 and 2017YFA0303003the Key Research of Frontier Sciences of CAS under Grant No QYZDY-SSW-SLH001
文摘The Major ana zero mode(MZM), which manifests as an exotic neutral excitation in superconductors, is the building block of topological quantum computing. It has recently been found in the vortices of several iron-based superconductors as a zero-bias conductance peak in tunneling spectroscopy. In particular, a clean and robust MZM has been observed in the cores of free vortices in(Li_(0.84)Fe_(0.16))OHFeSe. Here using scanning tunneling spectroscopy, we demonstrate that Major ana-induced resonant Andreev reflection occurs between the STM tip and this zero-bias bound state,and consequently, the conductance at zero bias is quantized as 2e^2/h. Our results present a hallmark signature of the MZM in the vortex of an intrinsic topological superconductor, together with its intriguing behavior.
基金supported by the National Key R&D Program of China (No.2018YFB1801003)the National Natural Science Foundation of China (Nos.61525501 and 61827817)+1 种基金the Beijing Natural Science Foundation (No.4192022)the Project of Shandong Province Higher Educational Science and Technology Program (No.J17KA089)。
文摘A tunable frequency-multiplying optoelectronic oscillator(OEO) based on a dual-parallel Mach-Zehnder modulator(DPMZM) is proposed and experimentally demonstrated. In the proposed system, the tunable fundamental microware signal is generated by a tunable optoelectronic oscillator incorporating a phase-shifted fiber Bragg grating(PS-FBG). By adjusting the DC bias of the DPMZM, the frequency-doubled microwave signal with a tunable frequency range from 11 GHz to 20 GHz and the frequency-quadrupled microwave signal with a tunable frequency range from 22.5 GHz to 26 GHz are generated. The phase noises of the fundamental, frequency-doubled and frequency-quadrupled signals at 10 k Hz offset frequency are-105.9 d Bc/Hz,-103.3 d Bc/Hz and-86.2 d Bc/Hz, respectively.
文摘New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator(MZM) to alter the amplitude of the light traveling on the slow axis of a fiber into the modulator with little changes in the fast-axis light amplitude.Another is based on adjusting the input DC voltages of a dual-polarization MZM operating in the reverse direction, which enables independent control of the two input orthogonal linearly polarized light amplitudes.Experimental results demonstrate that more than 30 dB difference in slow-and fast-axis light power can be obtained by controlling an MZM input DC voltage, and over 24 dB independent power adjustment for light traveling on the slow and fast axes into a dual-polarization MZM.
基金supported by the Humanity and Social Science Foundation of Chinese Ministry of Education (No.19YJC880053)the Natural Science Foundation of Zhejiang Province (No.LQ18F010008)+3 种基金the Philosophy and Social Science Planning Project of Zhejiang Province (No.19NDJC0103YB)the Natural Science Foundation of Ningbo (No.2018A610092)the Research Fund Project of Ningbo Institute of Finance&Economics (No.1320171002)the Education and Teaching Reform Program of Ningbo Institute of Finance&Economics (No.20jyyb16)。
文摘A low phase noise millimeter-wave(MMW) signal generator is proposed and experimentally demonstrated with a C-band passively Fabry-Pérot(F-P) quantum dot mode-locked laser. A novel method is proposed to generate low phase noise MMW signal, which is simply based on a commercial off-the-shelf dual-driven Li Nb O3 Mach-Zehnder modulator and a passively F-P quantum dot mode-locked laser. MMW signal with the frequency of 30 GHz, 45 GHz and 90 GHz respectively is obtained experimentally. Single-sideband phase noise of the 30 GHz and 45 GHz MMW signal is-112 d Bc/Hz and-106 d Bc/Hz at an offset of 1 k Hz, respectively. The linewidth of the 30 GHz and 45 GHz MMW signal is about from 225 Hz and 239 Hz. This is considered a very simple MMW generator with a quasi-tunable broadband and ultra-low phase noise.
基金Supported by the National Natural Science Foundation of China under Grant No 11274379the Research Funds of Renmin University of China under Grant No 14XNLQ07
文摘The one-dimensional interacting Kitaev chain at half filling is studied. The symmetry of the Hamiltonian is examined by dual transformations, and various physical quantities as a function of the fermion-fermion interaction U are calculated systematically using the density matrix renormalization group method. A special value of interaction Up is revealed in the topological region of the phase diagram. We show that at Up the ground states are strictly two-fold degenerate even though the chain length is finite and the zero-energy peak due to the Majorana zero modes is maximally enhanced and exactly localized at the end sites. Here Up may be attractive or repulsive depending on other system parameters. We also give a qualitative understanding of the effect of interaction under the self-consistent mean field framework.