Myogenesis is a complex process required for skeletal muscle formation during embryonic development and for regeneration and growth of myofibers in adults. Accumulating evidence suggests that long non-coding RNAs (In...Myogenesis is a complex process required for skeletal muscle formation during embryonic development and for regeneration and growth of myofibers in adults. Accumulating evidence suggests that long non-coding RNAs (IncRNAs) play key roles in regulating cell fate decision and function in various tissues. However, the role of IncRNAs in the regulation of myogenesis remains poorly understood. In this study, we identifed a novel muscle-enriched IncRNA called 'Myolinc (AK142388)', which we functionally characterized in the C2C12 myoblast cell line. Myolinc is predominately localized in the nucleus, and its levels increase upon induction of the differ-entiation. Knockdown of Myolinc impairs the expression of myogenic regulatory factors and formation of multi-nucleated myotubes in cultured myoblasts. Myolinc also regulates the expression of Filipl in a cis-manner. Similar to MyoUnc, knockdown of FiUpl inhi-bits myogenic differentiation. Furthermore, Myolinc binds to TAR DNA-binding protein 43 (TDP-43), a DNA/RNA-binding protein that regulates the expression of muscle genes (e.g. Actal and MyoD). Knockdown of TDP-43 inhibits myogenic differentiation. We also show that Myolinc-TDP-43 interaction is essential for the binding of TDP-43 to the promoter regions of muscle marker genes. Finally, we show that silencing of Myolinc inhibits skeletal muscle regeneration in adult mice. Altogether, our study identifies a novel IncRNA that controls key regulatory networks of myogenesis.展开更多
Although some authors suggest that there is mitotic division in the heart,most cardiomyocytes do not have the capacity to regenerate after myocardial infarction and when this occurs there is a deterioration of contrac...Although some authors suggest that there is mitotic division in the heart,most cardiomyocytes do not have the capacity to regenerate after myocardial infarction and when this occurs there is a deterioration of contractile function,and if the area of infarction is extensive ventricular remodeling may occur,leading to the development of heart failure.Cell transplantation into the myocardium with the goal of recovery of cardiac function has been extensively studied in recent years. The effects of cell therapy are based directly on the cell type used and the type of cardiac pathology.For myocardial ischemia in the hibernating myocardium, bone marrow cells have functional benefits,however these results in transmural fibrosis are not evident. In these cases there is a benefit of implantation with skeletal myoblasts,for treating the underlying cause of disease,the loss of cell contractility.展开更多
Myoblast implantation is a unique, patented technology of muscle regeneration being tested in Phase III clinical trials of muscular dystrophy, ischemic cardiomyopathy, Phase II trial of cancer, and Phase I trial of Ty...Myoblast implantation is a unique, patented technology of muscle regeneration being tested in Phase III clinical trials of muscular dystrophy, ischemic cardiomyopathy, Phase II trial of cancer, and Phase I trial of Type II diabetes. Differentiated and committed, myoblasts are not stem cells. Implanted myoblasts fuse spontaneously among themselves, replenishing genetically normal myofibers. They also fuse with genetically abnormal myofibers of muscular dystrophy, cardiomyopathy, or Type II diabetes, transferring their nuclei containing the normal human genome to provide stable, long-term expression of the missing gene products. They develop to become cardiomyocytes in the infracted myocardium. Myoblasts transduced with VEGF<sub>165</sub> allow concomitant regeneration of blood capillaries and myofibers. They are potent biologics for treating heart failure, ischemic cardiomyopathy, diabetic ischemia, erectile dysfunction, and baldness. Myoblasts, because of their small size, spindle shape, and resilience, can grow within wrinkles and on skin surfaces, thus enhancing the color, luster and texture of the skin “plated” with them. They can be injected subcutaneously as a cellular filler to reduce wrinkles. Intramuscular injection of myoblasts can augment the size, shape, consistency, tone and strength of muscle groups, improving the lines, contours and vitality to sculpt a youthful appearance. This highly promising technology has great social economic values in treating hereditary, fatal and debilitating disease conditions.展开更多
Syzygium jambolanum is a promising natural treatment for diabetes.The potential benefits of S jambolanum for diabetes include lowering blood sugar levels,increasing insulin sensitivity,protecting pancreatic beta cells...Syzygium jambolanum is a promising natural treatment for diabetes.The potential benefits of S jambolanum for diabetes include lowering blood sugar levels,increasing insulin sensitivity,protecting pancreatic beta cells,and slowing the absorption of glucose into the bloodstream.The anti-diabetic activity of the crude extract of S jambolanum was evaluated in L6 myotubes and the lipid deposition in tissue was measured using Nile red Staining.Nile red staining confirmed that a considerable quantity of lipids had been deposited in the tissue treated with a crude extract of S jambolanum,comparable to the quantity of lipids deposited with a standard drug known as Rosiglitazone.This study analyzed the anti-diabetic activity of a crude extract of S jambolanum to understand its potential as a feedstock for extracting bioactive constituents to screen for bioactive molecules in the treatment of diabetes.展开更多
Engineered cardiac constructs(ECC)aid in the progression of regenerative medicine,disease modeling and targeted drug delivery to adjust and aim the release of remedial combination as well as decrease the side effects ...Engineered cardiac constructs(ECC)aid in the progression of regenerative medicine,disease modeling and targeted drug delivery to adjust and aim the release of remedial combination as well as decrease the side effects of drugs.In this research,polycaprolactone/gold nanoparticles(PCL/GNPs)three-dimensional(3D)composite scaffolds were manufactured by 3D printing using the fused deposition modeling(FDM)method and then coated with gelatin/spironolactone(GEL/SPL).Scanning electron microscopy(SEM)and Fourier transform-infrared spectroscopy(FTIR–ATR)were applied to characterize the samples.Furthermore,drug release,biodegradation,behavior of the myoblasts(H9C2)cell line,and cytotoxicity of the 3D scaffolds were evaluated.The microstructural observation of the scaffolds reported interconnected pores with 150–300µm in diameter.The 3D scaffolds were degraded significantly after 28 days of immersion in stimulated body fluid(SBF),with the maximum rate of GEL-coated 3D scaffolds.SPL release from cross-linked GEL coating demonstrated the excess of drug release over time,and according to the control release systems,the drug delivery systems(DDS)went into balance after the 14th day.In addition,cell culture study showed that with the addition of GNPs,the proliferation of(H9C2)was enhanced,and with GEL/SPL coating the cell attachment and viability were improved significantly.These findings suggested that PCL/GNPs 3D scaffolds coated with GEL/SPL can be an appropriate choice for myocardial tissue engineering.展开更多
BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance(IR).Many studies have confirmed the interactions between macrophages and skelet...BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance(IR).Many studies have confirmed the interactions between macrophages and skeletal muscle regulated the inflammation and regeneration of skeletal muscle.However,despite of the decades of research,whether macrophages infiltration and polarization in skeletal muscle under high glucose(HG)milieus results in the development of IR is yet to be elucidated.C2C12 myoblasts are well-established and excellent model to study myogenic regulation and its responses to stimulation.Further exploration of macrophages'role in myoblasts IR and the dynamics of their infiltration and polarization is warranted.AIM To evaluate interactions between myoblasts and macrophages under HG,and its effects on inflammation and IR in skeletal muscle.METHODS We detected the polarization status of macrophages infiltrated to skeletal muscles of IR mice by hematoxylin and eosin and immunohistochemical staining.Then,we developed an in vitro co-culture system to study the interactions between myoblasts and macrophages under HG milieus.The effects of myoblasts on macrophages were explored through morphological observation,CCK-8 assay,Flow Cytometry,and enzyme-linked immunosorbent assay.The mediation of macrophages to myogenesis and insulin sensitivity were detected by morphological observation,CCK-8 assay,Immunofluorescence,and 2-NBDG assay.RESULTS The F4/80 and co-localization of F4/80 and CD86 increased,and the myofiber size decreased in IR group(P<0.01,g=6.26).Compared to Mc group,F4/80+CD86+CD206-cells,tumor necrosis factor-α(TNFα),inerleukin-1β(IL-1β)and IL-6 decreased,and IL-10 increased in McM group(P<0.01,g>0.8).In McM+HG group,F4/80+CD86+CD206-cells,monocyte chemoattractant protein 1,TNFα,IL-1βand IL-6 were increased,and F4/80+CD206+CD86-cells and IL-10 were decreased compared with Mc+HG group and McM group(P<0.01,g>0.8).Compered to M group,myotube area,myotube number and E-MHC were increased in MMc grou展开更多
文摘Myogenesis is a complex process required for skeletal muscle formation during embryonic development and for regeneration and growth of myofibers in adults. Accumulating evidence suggests that long non-coding RNAs (IncRNAs) play key roles in regulating cell fate decision and function in various tissues. However, the role of IncRNAs in the regulation of myogenesis remains poorly understood. In this study, we identifed a novel muscle-enriched IncRNA called 'Myolinc (AK142388)', which we functionally characterized in the C2C12 myoblast cell line. Myolinc is predominately localized in the nucleus, and its levels increase upon induction of the differ-entiation. Knockdown of Myolinc impairs the expression of myogenic regulatory factors and formation of multi-nucleated myotubes in cultured myoblasts. Myolinc also regulates the expression of Filipl in a cis-manner. Similar to MyoUnc, knockdown of FiUpl inhi-bits myogenic differentiation. Furthermore, Myolinc binds to TAR DNA-binding protein 43 (TDP-43), a DNA/RNA-binding protein that regulates the expression of muscle genes (e.g. Actal and MyoD). Knockdown of TDP-43 inhibits myogenic differentiation. We also show that Myolinc-TDP-43 interaction is essential for the binding of TDP-43 to the promoter regions of muscle marker genes. Finally, we show that silencing of Myolinc inhibits skeletal muscle regeneration in adult mice. Altogether, our study identifies a novel IncRNA that controls key regulatory networks of myogenesis.
文摘Although some authors suggest that there is mitotic division in the heart,most cardiomyocytes do not have the capacity to regenerate after myocardial infarction and when this occurs there is a deterioration of contractile function,and if the area of infarction is extensive ventricular remodeling may occur,leading to the development of heart failure.Cell transplantation into the myocardium with the goal of recovery of cardiac function has been extensively studied in recent years. The effects of cell therapy are based directly on the cell type used and the type of cardiac pathology.For myocardial ischemia in the hibernating myocardium, bone marrow cells have functional benefits,however these results in transmural fibrosis are not evident. In these cases there is a benefit of implantation with skeletal myoblasts,for treating the underlying cause of disease,the loss of cell contractility.
文摘Myoblast implantation is a unique, patented technology of muscle regeneration being tested in Phase III clinical trials of muscular dystrophy, ischemic cardiomyopathy, Phase II trial of cancer, and Phase I trial of Type II diabetes. Differentiated and committed, myoblasts are not stem cells. Implanted myoblasts fuse spontaneously among themselves, replenishing genetically normal myofibers. They also fuse with genetically abnormal myofibers of muscular dystrophy, cardiomyopathy, or Type II diabetes, transferring their nuclei containing the normal human genome to provide stable, long-term expression of the missing gene products. They develop to become cardiomyocytes in the infracted myocardium. Myoblasts transduced with VEGF<sub>165</sub> allow concomitant regeneration of blood capillaries and myofibers. They are potent biologics for treating heart failure, ischemic cardiomyopathy, diabetic ischemia, erectile dysfunction, and baldness. Myoblasts, because of their small size, spindle shape, and resilience, can grow within wrinkles and on skin surfaces, thus enhancing the color, luster and texture of the skin “plated” with them. They can be injected subcutaneously as a cellular filler to reduce wrinkles. Intramuscular injection of myoblasts can augment the size, shape, consistency, tone and strength of muscle groups, improving the lines, contours and vitality to sculpt a youthful appearance. This highly promising technology has great social economic values in treating hereditary, fatal and debilitating disease conditions.
文摘Syzygium jambolanum is a promising natural treatment for diabetes.The potential benefits of S jambolanum for diabetes include lowering blood sugar levels,increasing insulin sensitivity,protecting pancreatic beta cells,and slowing the absorption of glucose into the bloodstream.The anti-diabetic activity of the crude extract of S jambolanum was evaluated in L6 myotubes and the lipid deposition in tissue was measured using Nile red Staining.Nile red staining confirmed that a considerable quantity of lipids had been deposited in the tissue treated with a crude extract of S jambolanum,comparable to the quantity of lipids deposited with a standard drug known as Rosiglitazone.This study analyzed the anti-diabetic activity of a crude extract of S jambolanum to understand its potential as a feedstock for extracting bioactive constituents to screen for bioactive molecules in the treatment of diabetes.
文摘Engineered cardiac constructs(ECC)aid in the progression of regenerative medicine,disease modeling and targeted drug delivery to adjust and aim the release of remedial combination as well as decrease the side effects of drugs.In this research,polycaprolactone/gold nanoparticles(PCL/GNPs)three-dimensional(3D)composite scaffolds were manufactured by 3D printing using the fused deposition modeling(FDM)method and then coated with gelatin/spironolactone(GEL/SPL).Scanning electron microscopy(SEM)and Fourier transform-infrared spectroscopy(FTIR–ATR)were applied to characterize the samples.Furthermore,drug release,biodegradation,behavior of the myoblasts(H9C2)cell line,and cytotoxicity of the 3D scaffolds were evaluated.The microstructural observation of the scaffolds reported interconnected pores with 150–300µm in diameter.The 3D scaffolds were degraded significantly after 28 days of immersion in stimulated body fluid(SBF),with the maximum rate of GEL-coated 3D scaffolds.SPL release from cross-linked GEL coating demonstrated the excess of drug release over time,and according to the control release systems,the drug delivery systems(DDS)went into balance after the 14th day.In addition,cell culture study showed that with the addition of GNPs,the proliferation of(H9C2)was enhanced,and with GEL/SPL coating the cell attachment and viability were improved significantly.These findings suggested that PCL/GNPs 3D scaffolds coated with GEL/SPL can be an appropriate choice for myocardial tissue engineering.
基金Supported by National Natural Science Foundation of China,No.32200944“Qing Lan”Project of Jiangsu Provincethe Jiangsu Research Institute of Sports Science Foundation,No.BM-2023-03.
文摘BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance(IR).Many studies have confirmed the interactions between macrophages and skeletal muscle regulated the inflammation and regeneration of skeletal muscle.However,despite of the decades of research,whether macrophages infiltration and polarization in skeletal muscle under high glucose(HG)milieus results in the development of IR is yet to be elucidated.C2C12 myoblasts are well-established and excellent model to study myogenic regulation and its responses to stimulation.Further exploration of macrophages'role in myoblasts IR and the dynamics of their infiltration and polarization is warranted.AIM To evaluate interactions between myoblasts and macrophages under HG,and its effects on inflammation and IR in skeletal muscle.METHODS We detected the polarization status of macrophages infiltrated to skeletal muscles of IR mice by hematoxylin and eosin and immunohistochemical staining.Then,we developed an in vitro co-culture system to study the interactions between myoblasts and macrophages under HG milieus.The effects of myoblasts on macrophages were explored through morphological observation,CCK-8 assay,Flow Cytometry,and enzyme-linked immunosorbent assay.The mediation of macrophages to myogenesis and insulin sensitivity were detected by morphological observation,CCK-8 assay,Immunofluorescence,and 2-NBDG assay.RESULTS The F4/80 and co-localization of F4/80 and CD86 increased,and the myofiber size decreased in IR group(P<0.01,g=6.26).Compared to Mc group,F4/80+CD86+CD206-cells,tumor necrosis factor-α(TNFα),inerleukin-1β(IL-1β)and IL-6 decreased,and IL-10 increased in McM group(P<0.01,g>0.8).In McM+HG group,F4/80+CD86+CD206-cells,monocyte chemoattractant protein 1,TNFα,IL-1βand IL-6 were increased,and F4/80+CD206+CD86-cells and IL-10 were decreased compared with Mc+HG group and McM group(P<0.01,g>0.8).Compered to M group,myotube area,myotube number and E-MHC were increased in MMc grou