期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MS-DeepLabV3+的街景语义分割及城市多维特征识别 被引量:1
1
作者 柳林 马泽鹏 +2 位作者 孙毅 李万武 项子诚 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2024年第3期343-354,共12页
传统城市特征识别采用空间和统计方法提取分析指标,特征评价指标主观性较大。街景影像包含城市视觉信息,可以进行城市特征识别。以中国青岛市为例,构建面向街景的多尺度语义分割模型MS-DeepLabV3+。在编码区增加全特征提取通道聚合多尺... 传统城市特征识别采用空间和统计方法提取分析指标,特征评价指标主观性较大。街景影像包含城市视觉信息,可以进行城市特征识别。以中国青岛市为例,构建面向街景的多尺度语义分割模型MS-DeepLabV3+。在编码区增加全特征提取通道聚合多尺度特征;在解码区增加多尺度特征提取通道,有效捕捉低层次特征;引入注意力机制模块和通道注意力,聚焦关键特征,提高街景语义分割的准确性,模型平均交并比、精确率和召回率分别提高了3.47%、2.37%和3.96%。在地块尺度上,从6个维度建立了城市多维特征向量,即环境维度、设施便利维度、经济富裕度、交通维度、城市安全维度和城市综合度,结合兴趣点数据和居住用地数据,以表征青岛市各城区的城市特征。使用Grad-CAM方法对语义分割模型进行可解释分析,采用特征归因SHAP方法挖掘了城市多维特征的内在驱动因素。结果发现,不同城区具有不同的特征向量,不同城区的特征向量具有在特定维度上的优势。研究结果有助于优化城市空间中多维度特征,为城市的规划建设提供参考。 展开更多
关键词 街景影像 ms-deeplabv3+模型 语义分割 多维特征向量 归因分析
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部