The high accuracy ab initio calculation method of multi-reference configuration interaction(MRCI) is used to compute the low-lying eight electronic states of CuN.The potential energy curves(PECs) of the X;∑;,1;Π...The high accuracy ab initio calculation method of multi-reference configuration interaction(MRCI) is used to compute the low-lying eight electronic states of CuN.The potential energy curves(PECs) of the X;∑;,1;Π,2;∑;,1;△,1;△,1;∑;,1;Π,and;∑;in a range of R=0.1 nm-0.5 nm are obtained and they are goodly asymptotes to the Cu(;S;) + N(;S;) and Cu(;S;)+N(;D;) dissociation limits.All the possible vibrational levels,rotational constants,and spectral constants for the six bound states of X;∑;,1;Π,2;∑;,1;△,1;∑;,and 1;Π are obtained by solving the radial Schrdinger equation of nuclear motion with the Le Roy provided Level 8.0 program.Also the transition dipole moments from the ground state X;∑;to the excited states 1;Π and 2;∑;are calculated and the result indicates that the 2;∑-X;∑ transition has a much higher transition dipole moment than the 1;Π-X;∑;transition even though the l;Π state is much lower in energy than the 2;∑;state.展开更多
文摘The high accuracy ab initio calculation method of multi-reference configuration interaction(MRCI) is used to compute the low-lying eight electronic states of CuN.The potential energy curves(PECs) of the X;∑;,1;Π,2;∑;,1;△,1;△,1;∑;,1;Π,and;∑;in a range of R=0.1 nm-0.5 nm are obtained and they are goodly asymptotes to the Cu(;S;) + N(;S;) and Cu(;S;)+N(;D;) dissociation limits.All the possible vibrational levels,rotational constants,and spectral constants for the six bound states of X;∑;,1;Π,2;∑;,1;△,1;∑;,and 1;Π are obtained by solving the radial Schrdinger equation of nuclear motion with the Le Roy provided Level 8.0 program.Also the transition dipole moments from the ground state X;∑;to the excited states 1;Π and 2;∑;are calculated and the result indicates that the 2;∑-X;∑ transition has a much higher transition dipole moment than the 1;Π-X;∑;transition even though the l;Π state is much lower in energy than the 2;∑;state.