To improve routing security in MPLS network, base on the stochastic routing algorithm, we propose a proactive mechanism we call enhanced secure heuristic-stochastic routing (ESHSR) , which brings to bear Bayesian prin...To improve routing security in MPLS network, base on the stochastic routing algorithm, we propose a proactive mechanism we call enhanced secure heuristic-stochastic routing (ESHSR) , which brings to bear Bayesian principle, explores the existence of multiple routes and forces packets to take alternate paths probabilistically. In this paper, we investigate game theoretic techniques to develop routing policies which make interception and eavesdropping maximally difficult. Through simulations, we validate our theoretical results and show how the resulting routing algorithms perform in terms of the security/delay/drop-rate, and we contrast them with the mechanism, secure stochastic routing (SSR). We observed that our scheme makes routing more secure than traditional secure stochastic routing, as they make use of the information of detecting the other side’s behavior.展开更多
The advantage of multi-protocol label switching (MPLS) is its capability to route the packets through explicit paths. But the nodes in the paths may be possibly attacked by the adversarial uncertainty. Aiming at this ...The advantage of multi-protocol label switching (MPLS) is its capability to route the packets through explicit paths. But the nodes in the paths may be possibly attacked by the adversarial uncertainty. Aiming at this problem in MPLS Network, in this paper, we propose a novel mechanism in MPLS network under adversar-ial uncertainty, making use of the theory of artificial intelligence, at first, we find the initialized label switching paths (LSPs) using the A* arithmetic, and secondly, during the process of data transmission, we switch the transmission path duly by taking advantage of the non-monotone reasoning mechanism. Com-pared to the traditional route mechanism, the experimental results show that it improves the security if data transmission remarkably under our novel mechanism in MPLS network.展开更多
In the multiple protocol label-switched (MPLS) networks, the commodities are transmitted by the label-switched paths (LSPs). For the sake of reducing the total cost and strengthening the central management, the MPLS n...In the multiple protocol label-switched (MPLS) networks, the commodities are transmitted by the label-switched paths (LSPs). For the sake of reducing the total cost and strengthening the central management, the MPLS networks restrict the number of paths that a commodity can use, for maintaining the quality of service (QoS) of the users, the demand of each commodity must be satisfied. Under the above conditions, some links in the network may be too much loaded, affecting the performance of the whole network drastically. For this problem, in [1], we proposed two mathematical models to describe it and a heuristic algorithm which quickly finds transmitting paths for each commodity are also presented. In this paper, we propose a new heuristic algorithm which finds a feasible path set for each commodity, and then select some paths from the path set through a mixed integer linear programming to transmit the demand of each commodity. This strategy reduces the scale of the original problem to a large extent. We test 50 instances and the results show the effectiveness of the new heuristic algorithm.展开更多
文摘To improve routing security in MPLS network, base on the stochastic routing algorithm, we propose a proactive mechanism we call enhanced secure heuristic-stochastic routing (ESHSR) , which brings to bear Bayesian principle, explores the existence of multiple routes and forces packets to take alternate paths probabilistically. In this paper, we investigate game theoretic techniques to develop routing policies which make interception and eavesdropping maximally difficult. Through simulations, we validate our theoretical results and show how the resulting routing algorithms perform in terms of the security/delay/drop-rate, and we contrast them with the mechanism, secure stochastic routing (SSR). We observed that our scheme makes routing more secure than traditional secure stochastic routing, as they make use of the information of detecting the other side’s behavior.
文摘The advantage of multi-protocol label switching (MPLS) is its capability to route the packets through explicit paths. But the nodes in the paths may be possibly attacked by the adversarial uncertainty. Aiming at this problem in MPLS Network, in this paper, we propose a novel mechanism in MPLS network under adversar-ial uncertainty, making use of the theory of artificial intelligence, at first, we find the initialized label switching paths (LSPs) using the A* arithmetic, and secondly, during the process of data transmission, we switch the transmission path duly by taking advantage of the non-monotone reasoning mechanism. Com-pared to the traditional route mechanism, the experimental results show that it improves the security if data transmission remarkably under our novel mechanism in MPLS network.
基金Acknowledgements: This work is supported by the National Nature Science Foundation of China (No. 90104029) and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050487046).
文摘In the multiple protocol label-switched (MPLS) networks, the commodities are transmitted by the label-switched paths (LSPs). For the sake of reducing the total cost and strengthening the central management, the MPLS networks restrict the number of paths that a commodity can use, for maintaining the quality of service (QoS) of the users, the demand of each commodity must be satisfied. Under the above conditions, some links in the network may be too much loaded, affecting the performance of the whole network drastically. For this problem, in [1], we proposed two mathematical models to describe it and a heuristic algorithm which quickly finds transmitting paths for each commodity are also presented. In this paper, we propose a new heuristic algorithm which finds a feasible path set for each commodity, and then select some paths from the path set through a mixed integer linear programming to transmit the demand of each commodity. This strategy reduces the scale of the original problem to a large extent. We test 50 instances and the results show the effectiveness of the new heuristic algorithm.