The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour i...The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour is analyzed for deformation temperatures between RT and 950℃, Fracture resistance behaviour and toughening mechanisms at RT and 800℃ are analyzed. and the inverse relationship botween ductility and toughness is explained using the crack initiation toughness. The preliminary results of load-controlled fatigue behaviour at 800℃ are interpreted using the tensile behaviour because deformation structure and fracture modes are similar under these two loading conditions展开更多
Sparse code multiple access(SCMA) is a novel non-orthogonal multiple access scheme proposed to meet the challenging demand of the future 5G communications, especially in support of the massive connections. The coded b...Sparse code multiple access(SCMA) is a novel non-orthogonal multiple access scheme proposed to meet the challenging demand of the future 5G communications, especially in support of the massive connections. The coded bits from each data stream will be directly mapped as multi-dimensional SCMA codeword in complex domain and then spread onto the physical resource elements in a sparse manner. The number of codewords that can be nonorthogonally multiplexed in one SCMA block can be made much larger than the number of orthogonal resource elements therein, resulting in an overloaded system. The sparsity in the spreading pattern and the design in the multidimensional modulator jointly ensure the SCMA codewords can be robustly decoded with low complexity. In this paper, we focus on the low complexity receiver design and verified the superior of an SCMA system via simulations and real-time prototyping. Lab tests and field tests all show that SCMA is a promising candidate for 5G non-orthogonal multiple access which can provide up to 300% overloading that triples the whole system throughput while still enjoying the link performance close to orthogonal transmissions.展开更多
文摘The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour is analyzed for deformation temperatures between RT and 950℃, Fracture resistance behaviour and toughening mechanisms at RT and 800℃ are analyzed. and the inverse relationship botween ductility and toughness is explained using the crack initiation toughness. The preliminary results of load-controlled fatigue behaviour at 800℃ are interpreted using the tensile behaviour because deformation structure and fracture modes are similar under these two loading conditions
文摘Sparse code multiple access(SCMA) is a novel non-orthogonal multiple access scheme proposed to meet the challenging demand of the future 5G communications, especially in support of the massive connections. The coded bits from each data stream will be directly mapped as multi-dimensional SCMA codeword in complex domain and then spread onto the physical resource elements in a sparse manner. The number of codewords that can be nonorthogonally multiplexed in one SCMA block can be made much larger than the number of orthogonal resource elements therein, resulting in an overloaded system. The sparsity in the spreading pattern and the design in the multidimensional modulator jointly ensure the SCMA codewords can be robustly decoded with low complexity. In this paper, we focus on the low complexity receiver design and verified the superior of an SCMA system via simulations and real-time prototyping. Lab tests and field tests all show that SCMA is a promising candidate for 5G non-orthogonal multiple access which can provide up to 300% overloading that triples the whole system throughput while still enjoying the link performance close to orthogonal transmissions.