The main objective of this research was to study the potential of sodium silicate modification on moso bamboo particles as reinforcements for thermoplastic. Moso bamboo particles were modified with sodium silicate aqu...The main objective of this research was to study the potential of sodium silicate modification on moso bamboo particles as reinforcements for thermoplastic. Moso bamboo particles were modified with sodium silicate aqueous solutions (of 0.5%, 1%, 2%, 5% and 10% concentrations). The mechanical properties of sodium silicate treated moso bamboo particles reinforced PVC composites (BPPC) were calculated and compared with raw bamboo particles filled samples. The thermal characteristics of the BPPC were studied to investigate the feasibility of sodium silicate treatment on moso bamboo particles. The particle morphology and BPPC microstructure were investigated by scanning electron microscopy. Results showed that the tensile strength and modulus of elasticity of the BPPC increased before the concentration of sodium silicate solution reached 5% and got their maximum values of 15.72 MPa and 2956.80 MPa, respectively at 5% concentration. The modulus of rupture obtained the maximum value of 27.73 MPa at 2% concentration. The mechanical curve decreased as the concentration of solution went higher. Differential scanning calorimetric analysis illustrated that the sodium silicate solution treated BPPC possesses a better compatibility. More uniform dispersion of moso bamboo particles in PVC matrix was obtained after the sodium silicate treatment. Hence, the sodium silicate was a feasible and competitive agent of creating moso bamboo particles reinforced PVC composites.展开更多
The antioxidant activity of solvent extracts from two main bamboo species, moso bamboo (Phyllostachys pubescens) and madake bamboo (P. bambusoides) in Japan, was first evaluated by scavenging free radical of 1,1-diphe...The antioxidant activity of solvent extracts from two main bamboo species, moso bamboo (Phyllostachys pubescens) and madake bamboo (P. bambusoides) in Japan, was first evaluated by scavenging free radical of 1,1-diphenyl-2-picrylhydrazyl (DPPH), the inhibition activity for peroxidation of linoleic acid, and the reduction power. The methanol-extracts of moso bamboo culms and madake bamboo leaves presented stronger antioxidant activity compared with DPPH scavenging activity. Methanol-extract of moso bamboo culms was further fractionated by different solvents and n-butanol soluble fraction exhibited the most significant activity in the DPPH scavenging assay. The fractionation of n-butanol soluble extract was isolated by silica gel column with gradient mixture solvent of chloroform and methanol. The isolated fractions were directed by the antioxidant activity measured by scavenging the stable DPPH free radical. It was observed that most of the eluted fractions showed the antioxidative activity. Fractions acquired from elution with the mixture solvent of chloroform and methanol (10:1–5:1) showed stronger antioxidant activity than the other fractions.展开更多
Biomineralization of Si by plants into phytolith formation and precipitation of Si into clays during weathering are two important processes of silicon’s biogeochemical cycle. As a silicon-accumulating plant, the wide...Biomineralization of Si by plants into phytolith formation and precipitation of Si into clays during weathering are two important processes of silicon’s biogeochemical cycle. As a silicon-accumulating plant, the widely distributed and woody Phyl-lostachys heterocycla var. pubescens (moso bamboo) contributes to storing silicon by biomineralization and, thus, prevents eu-trophication of nearby waterbodies through silicon’s erosion of soil particles. A study on the organic pool and biological cycle of silicon (Si) of the moso bamboo community was conducted in Wuyishan Biosphere Reserve, China. The results showed that: (1) the standing crop of the moso bamboo community was 13355.4 g/m2, of which 53.61%, 45.82% and 0.56% are represented by the aboveground and belowground parts of moso bamboos, and the under-story plants, respectively; (2) the annual net primary production of the community was 2887.1 g/(m2·a), among which the aboveground part, belowground part, litterfalls, and other fractions, accounted for 55.86%, 35.30%, 4.50% and 4.34%, respec-tively; (3) silicon concentration in stem, branch, leaf, base of stem, root, whip of bamboos, and other plants was 0.15%, 0.79%, 3.10%, 4.40%, 7.32%, 1.52% and 1.01%, respectively; (4) the total Si accumulated in the standing crop of moso bamboo com-munity was 448.91 g/m2, with 99.83% of Si of the total community stored in moso bamboo populations; (5) within moso bamboo community, the annual uptake, retention, and return of Si were 95.75, 68.43, 27.32 g/(m2·a), respectively; (6) the turnover time of Si, which is the time an average atom of Si remains in the soil before it is recycled into the trees or shrubs, was 16.4 years; (7) the enrichment ratio of Si in the moso bamboo community, which is the ratio of the mean concentration of nutrients in the net primary production to the mean concentration of nutrients in the biomass of a community, was 0.64; and lastly, (8) moso bamboo plants stored about 1.26×1010 kg of silicon in the organic pool made up by the moso bamboo fo展开更多
基金supported by the National High Technology Research and Development Program of China ("863" Project) (Grant No 2009AA043603-2)the Science Fundation of Chinese University and the Education Department of Zhejiang Province (Grant No 200909353)
文摘The main objective of this research was to study the potential of sodium silicate modification on moso bamboo particles as reinforcements for thermoplastic. Moso bamboo particles were modified with sodium silicate aqueous solutions (of 0.5%, 1%, 2%, 5% and 10% concentrations). The mechanical properties of sodium silicate treated moso bamboo particles reinforced PVC composites (BPPC) were calculated and compared with raw bamboo particles filled samples. The thermal characteristics of the BPPC were studied to investigate the feasibility of sodium silicate treatment on moso bamboo particles. The particle morphology and BPPC microstructure were investigated by scanning electron microscopy. Results showed that the tensile strength and modulus of elasticity of the BPPC increased before the concentration of sodium silicate solution reached 5% and got their maximum values of 15.72 MPa and 2956.80 MPa, respectively at 5% concentration. The modulus of rupture obtained the maximum value of 27.73 MPa at 2% concentration. The mechanical curve decreased as the concentration of solution went higher. Differential scanning calorimetric analysis illustrated that the sodium silicate solution treated BPPC possesses a better compatibility. More uniform dispersion of moso bamboo particles in PVC matrix was obtained after the sodium silicate treatment. Hence, the sodium silicate was a feasible and competitive agent of creating moso bamboo particles reinforced PVC composites.
文摘The antioxidant activity of solvent extracts from two main bamboo species, moso bamboo (Phyllostachys pubescens) and madake bamboo (P. bambusoides) in Japan, was first evaluated by scavenging free radical of 1,1-diphenyl-2-picrylhydrazyl (DPPH), the inhibition activity for peroxidation of linoleic acid, and the reduction power. The methanol-extracts of moso bamboo culms and madake bamboo leaves presented stronger antioxidant activity compared with DPPH scavenging activity. Methanol-extract of moso bamboo culms was further fractionated by different solvents and n-butanol soluble fraction exhibited the most significant activity in the DPPH scavenging assay. The fractionation of n-butanol soluble extract was isolated by silica gel column with gradient mixture solvent of chloroform and methanol. The isolated fractions were directed by the antioxidant activity measured by scavenging the stable DPPH free radical. It was observed that most of the eluted fractions showed the antioxidative activity. Fractions acquired from elution with the mixture solvent of chloroform and methanol (10:1–5:1) showed stronger antioxidant activity than the other fractions.
基金Project (No. 30370275) supported by the National Natural Science Foundation of China
文摘Biomineralization of Si by plants into phytolith formation and precipitation of Si into clays during weathering are two important processes of silicon’s biogeochemical cycle. As a silicon-accumulating plant, the widely distributed and woody Phyl-lostachys heterocycla var. pubescens (moso bamboo) contributes to storing silicon by biomineralization and, thus, prevents eu-trophication of nearby waterbodies through silicon’s erosion of soil particles. A study on the organic pool and biological cycle of silicon (Si) of the moso bamboo community was conducted in Wuyishan Biosphere Reserve, China. The results showed that: (1) the standing crop of the moso bamboo community was 13355.4 g/m2, of which 53.61%, 45.82% and 0.56% are represented by the aboveground and belowground parts of moso bamboos, and the under-story plants, respectively; (2) the annual net primary production of the community was 2887.1 g/(m2·a), among which the aboveground part, belowground part, litterfalls, and other fractions, accounted for 55.86%, 35.30%, 4.50% and 4.34%, respec-tively; (3) silicon concentration in stem, branch, leaf, base of stem, root, whip of bamboos, and other plants was 0.15%, 0.79%, 3.10%, 4.40%, 7.32%, 1.52% and 1.01%, respectively; (4) the total Si accumulated in the standing crop of moso bamboo com-munity was 448.91 g/m2, with 99.83% of Si of the total community stored in moso bamboo populations; (5) within moso bamboo community, the annual uptake, retention, and return of Si were 95.75, 68.43, 27.32 g/(m2·a), respectively; (6) the turnover time of Si, which is the time an average atom of Si remains in the soil before it is recycled into the trees or shrubs, was 16.4 years; (7) the enrichment ratio of Si in the moso bamboo community, which is the ratio of the mean concentration of nutrients in the net primary production to the mean concentration of nutrients in the biomass of a community, was 0.64; and lastly, (8) moso bamboo plants stored about 1.26×1010 kg of silicon in the organic pool made up by the moso bamboo fo