Long-term continuous cropping of soybean (Glycine max), spring wheat (Triticum aesativum) and maize (Zea mays) is widely practiced by local farmers in northeast China. A field experiment (started in 1991) was ...Long-term continuous cropping of soybean (Glycine max), spring wheat (Triticum aesativum) and maize (Zea mays) is widely practiced by local farmers in northeast China. A field experiment (started in 1991) was used to investigate the differences in soil carbon dioxide (CO2) emissions under continuous cropping of the three major crops and to evaluate the relationships between CO2 fluxes and soil temperature and moisture for Mollisols in northeast China. Soil CO2 emissions were measured using a closed-chamber method during the growing season in 2011. No remarkable differences in soil organic carbon were found among the cropping systems (P〉0.05). However, significant differences in CO2 emissions from soils were observed among the three cropping systems (P〈0.05). Over the course of the entire growing season, cumulative soil CO2 emissions under different cropping systems were in the following order: continuous maize ((829±10) g CO2 m2)〉continuous wheat ((629±22) g CO2 m^2)〉continuous soybean ((474±30) g CO2 m-2). Soil temperature explained 42-65% of the seasonal variations in soil CO2 flux, with a Q10 between 1.63 and 2.31; water-filled pore space explained 25-47% of the seasonal variations in soil CO2 flux. A multiple regression model including both soil temperature (T, ~C) and water-filled pore space (W, %), log(])=a+bT log(W), was established, accounting for 51-66% of the seasonal variations in soil CO2 flux. The results suggest that soil CO2 emissions and their Q10 values under a continuous cropping system largely depend on crop types in Mollisols of Northeast China.展开更多
Aims The potential for mixtures of plant species to produce more biomass than every one of their constituent species in monoculture is still controversially discussed in the literature.Here we tested how this socalled...Aims The potential for mixtures of plant species to produce more biomass than every one of their constituent species in monoculture is still controversially discussed in the literature.Here we tested how this socalled transgressive overyielding is affected by variation between and within species in monoculture yields in biodiversity experiments.Methods We use basic statistical principles to calculate expected maximum monoculture yield in a species pool used for a biodiversity experiment.Using a real example we show how between-and withinspecies variance components in monoculture yields can be obtained.Combining the two components we estimate the importance of sampling bias in transgressive overyielding analysis.Important Findings The net biodiversity effect(difference between mixture and average monoculture yield)needed to achieve transgressive overyielding increases with the number of species in a mixture and with the variation between constituent species in monoculture yields.If there is no significant variation between species,transgressive overyielding should not be calculated using the best monoculture,because in this case the difference between this species and the other species could exclusively reflect a sampling bias.The sampling bias decreases with increasing variation between species.Tests for transgressive overyielding require replicated species’monocultures.However,it can be doubted whether such an emphasis on monocultures in biodiversity experiments is justified if an analysis of transgressive overyielding is not the major goal.展开更多
Continuous monoculture problems, or replanting diseases, are one of the key factors affecting productivity and quality of Chinese medicinal plants. The underlying mechanism is still being explored. Most of the studies...Continuous monoculture problems, or replanting diseases, are one of the key factors affecting productivity and quality of Chinese medicinal plants. The underlying mechanism is still being explored. Most of the studies on continuous monoculture ofRehmannia glutinosa L. are focused on plant nutritional physiology, root exudate, and its autotoxieity. However, the changes in the diversity of microflora in the rhizosphere mediated by the continuous monoculture pattern have been remained unknown. In this study, terminal restriction fragment length polymorphism (T-RFLP) technique was used for fingerprinting fungal diversity in the rhizosphere soil sampled from the fields ofR. glutinosa monocultured for 1 and 2 yr. The results showed that the structure of fungal community in consecutively moncultured rhizosphere soil was different from that in control soil (no cropping soil), and varied with the consecutive monoeulture years (1 and 2 yr). The comprehensive evaluation index (D) of fungal community estimated by principal component analysis of fragment number, peak area, Shannon-Weiner index, and Margalef index was higher in 1 yr monoculture soil than that in 2 yr monoculture soil, suggesting that consecutive monoculture of R. glutinosa could be a causative agent to decrease the diversity of fungal community in the rhizosphere soil.展开更多
Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in ...Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in topsoils (0-10 cm)were quantified in two 33-year-old monoculture plantations of Castanopsis kawakamii Hayata (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF), and compared to a neighboring relict natural C. kawakamii forest (NF), in Sanming,Fujian. Five soil samples were collected once each in January, April, July, September and November in 2000 in each forest for laboratory analysis. Over the sampling year, there were significant differences for bacteria, fungi and actinomycetes between forests and between seasons (P < 0.05). The largest bacteria and fungi populations were in NF, while CF contained the greatest number of actinomycetes. There were also significant differences (P < 0.05) with microbial respiration for forests and seasons. Additionally, compared with NF, urease and acid phosphatase were significantly lower (P < 0.05)in CK and CF. Also, the correlations of soil hydrolysable N and available P to soil microbial and enzymatic activities were highly significant (P < 0.01). Thus, to alter the traditional Chinese fir monoculture so as to mimic the natural forest conditions, managing mixed stands of Chinese fir and broadleaf trees or conducting crop rotation of conifers and broadleaf trees as well as minimizing forest disturbances like clear-cutting, slash burning and soil preparing, could be utilized.展开更多
The traditional rice-fish farming system is selected as a "globally important agricultural heritage system" (GIAHS) by the Food and Agriculture Organization (FAO),United Nations Development Programme (UNDP),an...The traditional rice-fish farming system is selected as a "globally important agricultural heritage system" (GIAHS) by the Food and Agriculture Organization (FAO),United Nations Development Programme (UNDP),and Global Environment Facility (GEF),etc.In Zhejiang Province of China,where the pilot site for this GIAHS farming system is located,we compared the use of traditional rice varieties in rice-fish co-culture and rice monoculture.Further,we determined how traditional rice varieties were performed in this rice-fish system.Only 19% of the farmers who practiced rice monoculture planted traditional varieties while 52% of farmers who practiced rice-fish co-culture planted traditional varieties.Traditional varieties represented 13% of the total land cultivated under rice in the rice-fish system but only 2% in the rice monoculture system.In the rice-fish system,yield was lower for traditional rice varieties than hybrid varieties but application of fertilizers and pesticides was also lower.In a field experiment in the rice-fish system without pesticides,rice planthopper numbers and sheath blight incidence were lower from three traditional varieties than one hybrid variety;yields were 8 to 32% lower from the traditional varieties than the hybrid.Our results showed that traditional rice varieties can be preserved through conserving GIAHS rice-fish co-culture.Our study also indicated that traditional rice varieties can survive in the rice-fish system because these varieties are helpful to the whole system and beneficial to the farmers.展开更多
Soil properties were investigated in sites where three succeeding generationsof Chinese fir (Gunning-hamia lanceolata, (Lambert) Hooker) in Nanping, Fujian, China, werecultivated in order to show the impact of a repea...Soil properties were investigated in sites where three succeeding generationsof Chinese fir (Gunning-hamia lanceolata, (Lambert) Hooker) in Nanping, Fujian, China, werecultivated in order to show the impact of a repeated monoculture on site productivity. Compared withthe first generation (FG) stand the soil structure deteriorated in the second generation (SG) andthe third generation (TG) stands. For instance, the destruction rate of the peds increased by 55%-115% in the SG and the TG stands compared to the FG stand. Soil nutrient storage and nutrientavailability also decreased in the SG and the TG stands. For surface soils of 0-20 cm, the organicmatter content, total N and P, and available N and P decreased by 3%-20% relative to those in the FGstand. For many soil parameters, the differences between the FG stand and the SG and the TG standswere statistically significant (LSD test, P < 0.05). Furthermore, with each succeeding generation ofChinese fir, the total number of soil microbes declined, the soil enzyme activity weakened, and thesoil biological activity decreased. In order to maintain sustainable site productivity, newsilvicultural practices need to be developed for management of Chinese fir plantations.展开更多
基金supported by the Key Research Program of the Chinese Academy of Sciences (KZZD-EW-TZ-16-02)the Foundation for Young Talents of the Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (DLSYQ13001)the National Natural Science Foundation of China (41101283)
文摘Long-term continuous cropping of soybean (Glycine max), spring wheat (Triticum aesativum) and maize (Zea mays) is widely practiced by local farmers in northeast China. A field experiment (started in 1991) was used to investigate the differences in soil carbon dioxide (CO2) emissions under continuous cropping of the three major crops and to evaluate the relationships between CO2 fluxes and soil temperature and moisture for Mollisols in northeast China. Soil CO2 emissions were measured using a closed-chamber method during the growing season in 2011. No remarkable differences in soil organic carbon were found among the cropping systems (P〉0.05). However, significant differences in CO2 emissions from soils were observed among the three cropping systems (P〈0.05). Over the course of the entire growing season, cumulative soil CO2 emissions under different cropping systems were in the following order: continuous maize ((829±10) g CO2 m2)〉continuous wheat ((629±22) g CO2 m^2)〉continuous soybean ((474±30) g CO2 m-2). Soil temperature explained 42-65% of the seasonal variations in soil CO2 flux, with a Q10 between 1.63 and 2.31; water-filled pore space explained 25-47% of the seasonal variations in soil CO2 flux. A multiple regression model including both soil temperature (T, ~C) and water-filled pore space (W, %), log(])=a+bT log(W), was established, accounting for 51-66% of the seasonal variations in soil CO2 flux. The results suggest that soil CO2 emissions and their Q10 values under a continuous cropping system largely depend on crop types in Mollisols of Northeast China.
基金German Science Foundation(FOR 456–WE 2618/6-1 to B.S.)Swiss National Science Foundation(31–65224.01 to B.S.)Natural Sciences and Engineering Research Council of Canada(M.L.)。
文摘Aims The potential for mixtures of plant species to produce more biomass than every one of their constituent species in monoculture is still controversially discussed in the literature.Here we tested how this socalled transgressive overyielding is affected by variation between and within species in monoculture yields in biodiversity experiments.Methods We use basic statistical principles to calculate expected maximum monoculture yield in a species pool used for a biodiversity experiment.Using a real example we show how between-and withinspecies variance components in monoculture yields can be obtained.Combining the two components we estimate the importance of sampling bias in transgressive overyielding analysis.Important Findings The net biodiversity effect(difference between mixture and average monoculture yield)needed to achieve transgressive overyielding increases with the number of species in a mixture and with the variation between constituent species in monoculture yields.If there is no significant variation between species,transgressive overyielding should not be calculated using the best monoculture,because in this case the difference between this species and the other species could exclusively reflect a sampling bias.The sampling bias decreases with increasing variation between species.Tests for transgressive overyielding require replicated species’monocultures.However,it can be doubted whether such an emphasis on monocultures in biodiversity experiments is justified if an analysis of transgressive overyielding is not the major goal.
基金supported by the National Natural Science Foundation of China (30772729, 30671201, and81072983)the Key Technologies R&D Programof China during the 11th Five-Year Plan period(2006BAI09B03 and 2006BAI06A12-06)
文摘Continuous monoculture problems, or replanting diseases, are one of the key factors affecting productivity and quality of Chinese medicinal plants. The underlying mechanism is still being explored. Most of the studies on continuous monoculture ofRehmannia glutinosa L. are focused on plant nutritional physiology, root exudate, and its autotoxieity. However, the changes in the diversity of microflora in the rhizosphere mediated by the continuous monoculture pattern have been remained unknown. In this study, terminal restriction fragment length polymorphism (T-RFLP) technique was used for fingerprinting fungal diversity in the rhizosphere soil sampled from the fields ofR. glutinosa monocultured for 1 and 2 yr. The results showed that the structure of fungal community in consecutively moncultured rhizosphere soil was different from that in control soil (no cropping soil), and varied with the consecutive monoeulture years (1 and 2 yr). The comprehensive evaluation index (D) of fungal community estimated by principal component analysis of fragment number, peak area, Shannon-Weiner index, and Margalef index was higher in 1 yr monoculture soil than that in 2 yr monoculture soil, suggesting that consecutive monoculture of R. glutinosa could be a causative agent to decrease the diversity of fungal community in the rhizosphere soil.
基金the Basic Research Program of Fujian Province (No. 2000-F-004).
文摘Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in topsoils (0-10 cm)were quantified in two 33-year-old monoculture plantations of Castanopsis kawakamii Hayata (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF), and compared to a neighboring relict natural C. kawakamii forest (NF), in Sanming,Fujian. Five soil samples were collected once each in January, April, July, September and November in 2000 in each forest for laboratory analysis. Over the sampling year, there were significant differences for bacteria, fungi and actinomycetes between forests and between seasons (P < 0.05). The largest bacteria and fungi populations were in NF, while CF contained the greatest number of actinomycetes. There were also significant differences (P < 0.05) with microbial respiration for forests and seasons. Additionally, compared with NF, urease and acid phosphatase were significantly lower (P < 0.05)in CK and CF. Also, the correlations of soil hydrolysable N and available P to soil microbial and enzymatic activities were highly significant (P < 0.01). Thus, to alter the traditional Chinese fir monoculture so as to mimic the natural forest conditions, managing mixed stands of Chinese fir and broadleaf trees or conducting crop rotation of conifers and broadleaf trees as well as minimizing forest disturbances like clear-cutting, slash burning and soil preparing, could be utilized.
基金supported by the National Basic Research Program of China (2011CB100406)the Science and Technology Department of Zhejiang Province,China(2008C12064)+2 种基金the Ministry of Environment Protection of China (201090020)the Wenzhou Bureau of Science and Technology of Zhejiang Province,China(N20080024)the Key Laboratory of Non-Point Sources Pollution Control,Ministry of Agriculture of China (KYJD09021)
文摘The traditional rice-fish farming system is selected as a "globally important agricultural heritage system" (GIAHS) by the Food and Agriculture Organization (FAO),United Nations Development Programme (UNDP),and Global Environment Facility (GEF),etc.In Zhejiang Province of China,where the pilot site for this GIAHS farming system is located,we compared the use of traditional rice varieties in rice-fish co-culture and rice monoculture.Further,we determined how traditional rice varieties were performed in this rice-fish system.Only 19% of the farmers who practiced rice monoculture planted traditional varieties while 52% of farmers who practiced rice-fish co-culture planted traditional varieties.Traditional varieties represented 13% of the total land cultivated under rice in the rice-fish system but only 2% in the rice monoculture system.In the rice-fish system,yield was lower for traditional rice varieties than hybrid varieties but application of fertilizers and pesticides was also lower.In a field experiment in the rice-fish system without pesticides,rice planthopper numbers and sheath blight incidence were lower from three traditional varieties than one hybrid variety;yields were 8 to 32% lower from the traditional varieties than the hybrid.Our results showed that traditional rice varieties can be preserved through conserving GIAHS rice-fish co-culture.Our study also indicated that traditional rice varieties can survive in the rice-fish system because these varieties are helpful to the whole system and beneficial to the farmers.
基金Project supported by the National Natural Science Foundation of China (No. 30170770).
文摘Soil properties were investigated in sites where three succeeding generationsof Chinese fir (Gunning-hamia lanceolata, (Lambert) Hooker) in Nanping, Fujian, China, werecultivated in order to show the impact of a repeated monoculture on site productivity. Compared withthe first generation (FG) stand the soil structure deteriorated in the second generation (SG) andthe third generation (TG) stands. For instance, the destruction rate of the peds increased by 55%-115% in the SG and the TG stands compared to the FG stand. Soil nutrient storage and nutrientavailability also decreased in the SG and the TG stands. For surface soils of 0-20 cm, the organicmatter content, total N and P, and available N and P decreased by 3%-20% relative to those in the FGstand. For many soil parameters, the differences between the FG stand and the SG and the TG standswere statistically significant (LSD test, P < 0.05). Furthermore, with each succeeding generation ofChinese fir, the total number of soil microbes declined, the soil enzyme activity weakened, and thesoil biological activity decreased. In order to maintain sustainable site productivity, newsilvicultural practices need to be developed for management of Chinese fir plantations.