期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于权重迭代的偏好多目标分解算法解决参考点对算法影响的研究 被引量:9
1
作者 郑金华 喻果 贾月 《电子学报》 EI CAS CSCD 北大核心 2016年第1期67-76,共10页
在传统偏好多目标进化算法中,参考点是表达决策者的偏好信息最常用的方式,但是参考点所处位置信息有时严重影响算法的性能.针对以上问题,本文提出了一种基于权重迭代的偏好多目标分解算法(MOEA/DPRE),主要利用权重迭代方法获取一组均匀... 在传统偏好多目标进化算法中,参考点是表达决策者的偏好信息最常用的方式,但是参考点所处位置信息有时严重影响算法的性能.针对以上问题,本文提出了一种基于权重迭代的偏好多目标分解算法(MOEA/DPRE),主要利用权重迭代方法获取一组均匀的权重向量,并对偏好区域进行映射,使得算法在进化过程中,不用考虑参考点所处位置信息对算法性能的影响,另外提出了一种稳定可控的偏好区域模型,能响应决策者设置任意大小的偏好区域.通过对比实验表明该算法具有较好的收敛性和分布性,同时给出了满足决策者不同要求的算法模型,并且能够很好的解决参考点的位置信息对算法的影响. 展开更多
关键词 多目标分解算法 进化算法 偏好 权重迭代 决策者
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部