We show that it is possible to use a single sideband to induce two-photon transparency in a three-level cascade medium. The medium simultaneously absorbs two photons as a one-step process when the middle level is far ...We show that it is possible to use a single sideband to induce two-photon transparency in a three-level cascade medium. The medium simultaneously absorbs two photons as a one-step process when the middle level is far off one-photon resonance. A resonant sideband coupling on the upper transition and the two-photon one-step process drive the medium into a trapped state, and the dominant component is the ground state. Thus almost all population is trapped in the ground state and the two-photon absorption is dramatically suppressed. We present a numerical calculation for arbitrary values of the atomic and field parameters and also provide an analytic description for the required conditions.展开更多
We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photo...We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.展开更多
A diode-end-pumped electro-optic (EO) Q-switched Nd:YVO4 laser operating at repetition rate of 10 kpps (pulses per second) was reported. A block of La3Ga5SiO14 (LGS) single crystal was used as a Q-switch and th...A diode-end-pumped electro-optic (EO) Q-switched Nd:YVO4 laser operating at repetition rate of 10 kpps (pulses per second) was reported. A block of La3Ga5SiO14 (LGS) single crystal was used as a Q-switch and the driver was a metal oxide semiconductor field effect transistor (MOS-FET) pulser of high repetition rate and high voltage. At continuous wave (CW) operation, the slope efficiency of the laser was 46%, and maximum optical-to-optical efficiency was 38.5%. Using an output coupler with transmission of 70%, a 10-kpps Q-switched pulse train with 0.4-mJ monopulse energy and 8.2-ns pulse width was achieved, the optical conversion efficiency was around 15%, and the beam quality M^2 factor was less than 1.2.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos 60378008 and 10574052.
文摘We show that it is possible to use a single sideband to induce two-photon transparency in a three-level cascade medium. The medium simultaneously absorbs two photons as a one-step process when the middle level is far off one-photon resonance. A resonant sideband coupling on the upper transition and the two-photon one-step process drive the medium into a trapped state, and the dominant component is the ground state. Thus almost all population is trapped in the ground state and the two-photon absorption is dramatically suppressed. We present a numerical calculation for arbitrary values of the atomic and field parameters and also provide an analytic description for the required conditions.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51132004,11474096,11604199,U1704145 and 11747101the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500+1 种基金the Henan Provincial Natural Science Foundation of China under Grant No 182102210117the Higher Education Key Program of He’nan Province of China under Grant Nos 17A140025 and 16A140030
文摘We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.
文摘A diode-end-pumped electro-optic (EO) Q-switched Nd:YVO4 laser operating at repetition rate of 10 kpps (pulses per second) was reported. A block of La3Ga5SiO14 (LGS) single crystal was used as a Q-switch and the driver was a metal oxide semiconductor field effect transistor (MOS-FET) pulser of high repetition rate and high voltage. At continuous wave (CW) operation, the slope efficiency of the laser was 46%, and maximum optical-to-optical efficiency was 38.5%. Using an output coupler with transmission of 70%, a 10-kpps Q-switched pulse train with 0.4-mJ monopulse energy and 8.2-ns pulse width was achieved, the optical conversion efficiency was around 15%, and the beam quality M^2 factor was less than 1.2.