In this paper, an adaptive co-channel interference suppression technique for multi-user MIMO MC DS/CDMA system is envisaged. MC DS/CDMA offers many advantages like flexibility, robustness, low PAPR and spectral effici...In this paper, an adaptive co-channel interference suppression technique for multi-user MIMO MC DS/CDMA system is envisaged. MC DS/CDMA offers many advantages like flexibility, robustness, low PAPR and spectral efficiency. In spite of these advantages, performance of MC DS/CDMA system is greatly impaired by interference. Common interferences, which degrade the performance of the system, are MAI and CCI. Mitigating these interferences can directly increase the capacity of the system. In this work, an adaptive co-channel interference suppression technique based on single-stage and two-stage MMSE IC is considered for multi-user MIMO MC DS/CDMA system. Simulation results show that, at low SNR two-stage MMSE IC outperforms single-stage, while at high SNR, single-stage provides better BER performance. Based on this, a selection criterion has been propounded for improved system performance as a whole in interference limited environment. Also, adaptive selection criterion resulted in better error performance.展开更多
文摘In this paper, an adaptive co-channel interference suppression technique for multi-user MIMO MC DS/CDMA system is envisaged. MC DS/CDMA offers many advantages like flexibility, robustness, low PAPR and spectral efficiency. In spite of these advantages, performance of MC DS/CDMA system is greatly impaired by interference. Common interferences, which degrade the performance of the system, are MAI and CCI. Mitigating these interferences can directly increase the capacity of the system. In this work, an adaptive co-channel interference suppression technique based on single-stage and two-stage MMSE IC is considered for multi-user MIMO MC DS/CDMA system. Simulation results show that, at low SNR two-stage MMSE IC outperforms single-stage, while at high SNR, single-stage provides better BER performance. Based on this, a selection criterion has been propounded for improved system performance as a whole in interference limited environment. Also, adaptive selection criterion resulted in better error performance.