The Quxu (曲水) complex is a typical intrusive among the Gangdese batholiths. Two sets of samples collected from the Mianjiang (棉将) and Niedang (聂当) villages in Quxu County, including gabbro, mafic micro-enc...The Quxu (曲水) complex is a typical intrusive among the Gangdese batholiths. Two sets of samples collected from the Mianjiang (棉将) and Niedang (聂当) villages in Quxu County, including gabbro, mafic micro-enclaves (MME), and granodiorites in each set, were well dated in a previous SHRIMP zircon U-Pb analysis (47-51 Ma). In this article, the same zircons of the 6 samples were applied for LA ICP-MS Hf isotopic analysis. The total of 6 samples yields 176Hf/177Hf ratio ranging from 0.282 921 to 0.283 159, corresponding to εHf(t) values of 6.3-14.7. Their Hf depleted-mantle modal ages (TDM) are in the range of 137-555 Ma, and the zircon Hf isotope crustal model ages (TDMC) range from 178 to 718 Ma. The mantle-like high and positive Era(t) values in these samples suggest a mantledominated input of the juvenile source regions from which the batholith originated. The large variations in εHf(t) values, up to 5-ε unit among zircons within a single rock and up to 15-ε unit among zircons from the 6 samples, further suggest the presence of a magma mixing event during the time of magma generation. We suggest that the crustal end-member involved in the magma mixing is likely from the ancient basement within the Lhasa terrane itself. The zircon Hf isotopic compositions further suggest that magma mixing and magma underplating at about 50 Ma may have played an important role in creating the crust of the southern Tibetan plateau.展开更多
The El Niño and Southern Oscillation(ENSO)is the primary source of predictability for seasonal climate prediction.To improve the ENSO prediction skill,we established a multi-model ensemble(MME)prediction system,w...The El Niño and Southern Oscillation(ENSO)is the primary source of predictability for seasonal climate prediction.To improve the ENSO prediction skill,we established a multi-model ensemble(MME)prediction system,which consists of 5 dynamical coupled models with various complexities,parameterizations,resolutions,initializations and ensemble strategies,to account for the uncertainties as sufficiently as possible.Our results demonstrated the superiority of the MME over individual models,with dramatically reduced the root mean square error and improved the anomaly correlation skill,which can compete with,or even exceed the skill of the North American Multi-Model Ensemble.In addition,the MME suffered less from the spring predictability barrier and offered more reliable probabilistic prediction.The real-time MME prediction adequately captured the latest successive La Niña events and the secondary cooling trend six months ahead.Our MME prediction has,since April 2022,forecasted the possible occurrence of a third-year La Niña event.Overall,our MME prediction system offers better skill for both deterministic and probabilistic ENSO prediction than all participating models.These improvements are probably due to the complementary contributions of multiple models to provide additive predictive information,as well as the large ensemble size that covers a more reasonable uncertainty distribution.展开更多
基金supported by the National Basic Research Program of China (Nos. 2009CB421002, 2002CB412600)the Na-tional Natural Science Foundation of China (Nos. 40873023, 40830317, 40672044, 40503005, 40572048, 40473020)+1 种基金111 Project (No. B07011)China Geological Survey (No. 1212010610104)
文摘The Quxu (曲水) complex is a typical intrusive among the Gangdese batholiths. Two sets of samples collected from the Mianjiang (棉将) and Niedang (聂当) villages in Quxu County, including gabbro, mafic micro-enclaves (MME), and granodiorites in each set, were well dated in a previous SHRIMP zircon U-Pb analysis (47-51 Ma). In this article, the same zircons of the 6 samples were applied for LA ICP-MS Hf isotopic analysis. The total of 6 samples yields 176Hf/177Hf ratio ranging from 0.282 921 to 0.283 159, corresponding to εHf(t) values of 6.3-14.7. Their Hf depleted-mantle modal ages (TDM) are in the range of 137-555 Ma, and the zircon Hf isotope crustal model ages (TDMC) range from 178 to 718 Ma. The mantle-like high and positive Era(t) values in these samples suggest a mantledominated input of the juvenile source regions from which the batholith originated. The large variations in εHf(t) values, up to 5-ε unit among zircons within a single rock and up to 15-ε unit among zircons from the 6 samples, further suggest the presence of a magma mixing event during the time of magma generation. We suggest that the crustal end-member involved in the magma mixing is likely from the ancient basement within the Lhasa terrane itself. The zircon Hf isotopic compositions further suggest that magma mixing and magma underplating at about 50 Ma may have played an important role in creating the crust of the southern Tibetan plateau.
基金supported by the Scientific Research Fund of the Second Institute of Oceanography,MNR(Grant No.QNYC2101)the Scientific Research Fund of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2021SP310)+5 种基金the National Natural Science Foundation of China(Grant Nos.41690124&41690120)the National Key Research and Development Program(Grant No.2017YFA0604202)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311021001)Pro.Zhang was supported by the National Natural Science Foundation of China(Grant No.42030410)the Laoshan Laboratory Programe(Grant No.LSL202202402)the Startup Foundation for Introducing Talent of NUIST.
文摘The El Niño and Southern Oscillation(ENSO)is the primary source of predictability for seasonal climate prediction.To improve the ENSO prediction skill,we established a multi-model ensemble(MME)prediction system,which consists of 5 dynamical coupled models with various complexities,parameterizations,resolutions,initializations and ensemble strategies,to account for the uncertainties as sufficiently as possible.Our results demonstrated the superiority of the MME over individual models,with dramatically reduced the root mean square error and improved the anomaly correlation skill,which can compete with,or even exceed the skill of the North American Multi-Model Ensemble.In addition,the MME suffered less from the spring predictability barrier and offered more reliable probabilistic prediction.The real-time MME prediction adequately captured the latest successive La Niña events and the secondary cooling trend six months ahead.Our MME prediction has,since April 2022,forecasted the possible occurrence of a third-year La Niña event.Overall,our MME prediction system offers better skill for both deterministic and probabilistic ENSO prediction than all participating models.These improvements are probably due to the complementary contributions of multiple models to provide additive predictive information,as well as the large ensemble size that covers a more reasonable uncertainty distribution.