期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
HRDA-Net:面向真实场景的图像多篡改检测与定位算法
被引量:
4
1
作者
朱叶
余宜林
郭迎春
《通信学报》
EI
CSCD
北大核心
2022年第1期217-226,共10页
针对主流篡改数据集单幅图像仅包含一类篡改操作,且对真实图像定位存在“伪影”问题,构建面向真实场景的多篡改数据集(MM Dataset),每幅篡改图像包含拼接和移除2种篡改操作。针对多篡改检测与定位任务,提出端到端的高分辨率扩张卷积注...
针对主流篡改数据集单幅图像仅包含一类篡改操作,且对真实图像定位存在“伪影”问题,构建面向真实场景的多篡改数据集(MM Dataset),每幅篡改图像包含拼接和移除2种篡改操作。针对多篡改检测与定位任务,提出端到端的高分辨率扩张卷积注意力网络(HRDA-Net),利用自顶向下扩张卷积注意力(TDDCA)模块融合图像RGB域和SRM域特征。最后,采用混合扩张卷积模块(MDC)分别提取拼接、移除和篡改检测任务特征,实现篡改区域定位和篡改置信度预测。为提高网络训练效率,提出余弦相似度损失函数作为辅助损失。实验结果表明,在MM Dataset下,与主流语义分割方法相比,HRDA-Net具有较优的性能和较强的稳健性;在单篡改数据集CASIA和NIST下,与主流单篡改定位方法相比,HRDA-Net的F1和AUC分数均较优。
展开更多
关键词
深度学习
多篡改检测与定位
多篡改数据集
余弦相似度损失函数
下载PDF
职称材料
题名
HRDA-Net:面向真实场景的图像多篡改检测与定位算法
被引量:
4
1
作者
朱叶
余宜林
郭迎春
机构
河北工业大学人工智能与数据科学学院
深圳市媒体信息内容安全重点实验室
出处
《通信学报》
EI
CSCD
北大核心
2022年第1期217-226,共10页
基金
国家自然科学基金资助项目(No.62102129,No.61806071,No.91746207)
河北省自然科学基金资助项目(No.F2021202030,No.F2020202025,No.F2019202381,No.F2019202464)
河北省高等学校科学技术研究基金资助项目(No.QN2019207,No.QN2020185)。
文摘
针对主流篡改数据集单幅图像仅包含一类篡改操作,且对真实图像定位存在“伪影”问题,构建面向真实场景的多篡改数据集(MM Dataset),每幅篡改图像包含拼接和移除2种篡改操作。针对多篡改检测与定位任务,提出端到端的高分辨率扩张卷积注意力网络(HRDA-Net),利用自顶向下扩张卷积注意力(TDDCA)模块融合图像RGB域和SRM域特征。最后,采用混合扩张卷积模块(MDC)分别提取拼接、移除和篡改检测任务特征,实现篡改区域定位和篡改置信度预测。为提高网络训练效率,提出余弦相似度损失函数作为辅助损失。实验结果表明,在MM Dataset下,与主流语义分割方法相比,HRDA-Net具有较优的性能和较强的稳健性;在单篡改数据集CASIA和NIST下,与主流单篡改定位方法相比,HRDA-Net的F1和AUC分数均较优。
关键词
深度学习
多篡改检测与定位
多篡改数据集
余弦相似度损失函数
Keywords
deep
learning
multiple
manipulation
detection
and
location
mm
dataset
cosine
similarity
loss
function
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
HRDA-Net:面向真实场景的图像多篡改检测与定位算法
朱叶
余宜林
郭迎春
《通信学报》
EI
CSCD
北大核心
2022
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部