AIM: To assess the efficacy and safety of TECA type hybrid artificial liver support system (TECA-HALSS) in providing liver function of detoxification, metabolism and physiology by treating the patients with acute live...AIM: To assess the efficacy and safety of TECA type hybrid artificial liver support system (TECA-HALSS) in providing liver function of detoxification, metabolism and physiology by treating the patients with acute liver failure (ALF). METHODS: The porcine liver cells (1-2) x 10(10) were separated from the Chinese small swine and cultured in the bioreactor of TECA-BALSS at 37.0 degrees C and circulated through the outer space of the hollow fiber tubes in BALSS. The six liver failure patients with various degree of hepatic coma were treated by TECA-HALSS and with conventional medicines. The venous plasma of the patients was separated by a plasma separator and treated by charcoal adsorbent or plasma exchange. The plasma circulated through the inner space of the hollow fiber tubes of BALSS and mixed with the patients' blood cells and flew back to their blood circulation. Some small molecular weight substances were exchanged between the plasma and porcine liver cells. Each treatment lasted 6.0-7.0 h. Physiological and biochemical parameters were measured before,during and after the treatment. RESULTS: The average of porcine liver cells was (1.0-3.0) x 10(10) obtained from each swine liver using our modified enzymatic digestion method. The survival rate of the cells was 85%-93% by trypan blue stain and AO/PI fluorescent stain. After cultured in TECA-BALSS bioreactor for 6 h, the survival rate of cells still remained 70%-85%. At the end of TECA-HALSS treatment, the levels of plasma NH(3), ALT, TB and DB were significantly decreased. The patients who were in the state of drowsiness or coma before the treatment improved their appetite significantly and regained consciousness, some patients resumed light physical work on a short period after the treatment.One to two days after the treatment, the ratio of PTA increased warkedly. During the treatment, the heart rates, blood pressure, respiration condition and serum electrolytes (K(+), Na(+) and Cl(-)) were stable without thrombosis and bleeding in all the six patients. CONCLU展开更多
Oxysterol binding protein like 2(OSBPL2), an important regulator in cellular lipid metabolism and transport, was identified as a novel deafness-causal gene in our previous work. To resemble the phenotypic features of ...Oxysterol binding protein like 2(OSBPL2), an important regulator in cellular lipid metabolism and transport, was identified as a novel deafness-causal gene in our previous work. To resemble the phenotypic features of OSBPL2 mutation in animal models and elucidate the potential genotypephenotype associations, the OSBPL2-disrupted Bama miniature(BM) pig model was constructed using CRISPR/Cas9-mediated gene editing, somatic cell nuclear transfer(SCNT) and embryo transplantation approaches, and then subjected to phenotypic characterization of auditory function and serum lipid profiles. The OSBPL2-disrupted pigs displayed progressive hearing loss(HL) with degeneration/apoptosis of cochlea hair cells(HCs) and morphological abnormalities in HC stereocilia, as well as hypercholesterolaemia. High-fat diet(HFD) feeding aggravated the development of HL and led to more severe hypercholesterolaemia. The dual phenotypes of progressive HL and hypercholesterolaemia resembled in OSBPL2-disrupted pigs confirmed the implication of OSBPL2 mutation in nonsydromic hearing loss(NSHL) and contributed to the potential linkage between auditory dysfunction and dyslipidaemia/hypercholesterolaemia.展开更多
A sliding mode control design for a miniature unmanned helicopter is presented. The control objective is to let the helicopter track some predefined velocity and yaw trajectories. A new sliding mode control design met...A sliding mode control design for a miniature unmanned helicopter is presented. The control objective is to let the helicopter track some predefined velocity and yaw trajectories. A new sliding mode control design method is developed based on a linearized dynamic model. In order to facilitate the control design, the helicopter's dynamic model is divided into two subsystems,such as the longitudinal-lateral and the heading-heave subsystem. The proposed controller employs sliding mode control technique to compensate for the immeasurable flapping angles' dynamic effects and external disturbances. The global asymptotic stability(GAS) of the closed-loop system is proved by the Lyapunov based stability analysis. Numerical simulations demonstrate that the proposed controller can achieve superior tracking performance compared with the proportionalintegral-derivative(PID) and linear-quadratic regulator(LQR) cascaded controller in the presence of wind gust disturbances.展开更多
基金Supported by the Research Initiation Fund for Returned Students from Overseas,Ministry of Education,No.94001
文摘AIM: To assess the efficacy and safety of TECA type hybrid artificial liver support system (TECA-HALSS) in providing liver function of detoxification, metabolism and physiology by treating the patients with acute liver failure (ALF). METHODS: The porcine liver cells (1-2) x 10(10) were separated from the Chinese small swine and cultured in the bioreactor of TECA-BALSS at 37.0 degrees C and circulated through the outer space of the hollow fiber tubes in BALSS. The six liver failure patients with various degree of hepatic coma were treated by TECA-HALSS and with conventional medicines. The venous plasma of the patients was separated by a plasma separator and treated by charcoal adsorbent or plasma exchange. The plasma circulated through the inner space of the hollow fiber tubes of BALSS and mixed with the patients' blood cells and flew back to their blood circulation. Some small molecular weight substances were exchanged between the plasma and porcine liver cells. Each treatment lasted 6.0-7.0 h. Physiological and biochemical parameters were measured before,during and after the treatment. RESULTS: The average of porcine liver cells was (1.0-3.0) x 10(10) obtained from each swine liver using our modified enzymatic digestion method. The survival rate of the cells was 85%-93% by trypan blue stain and AO/PI fluorescent stain. After cultured in TECA-BALSS bioreactor for 6 h, the survival rate of cells still remained 70%-85%. At the end of TECA-HALSS treatment, the levels of plasma NH(3), ALT, TB and DB were significantly decreased. The patients who were in the state of drowsiness or coma before the treatment improved their appetite significantly and regained consciousness, some patients resumed light physical work on a short period after the treatment.One to two days after the treatment, the ratio of PTA increased warkedly. During the treatment, the heart rates, blood pressure, respiration condition and serum electrolytes (K(+), Na(+) and Cl(-)) were stable without thrombosis and bleeding in all the six patients. CONCLU
基金supported by grants from the National Natural Science Foundation of China (81771000 and 31571302)the Key Research and Development Program of Jiangsu Province (Social Development: BE2016762)+2 种基金the Key Project of Science and Technology Innovation of Nanjing Medical University (2017NJMUCX001)grants from the China Postdoctoral Science Foundation (2016M600431)the Jiangsu Planned Projects for Postdoctoral Research Funds (1601071B)
文摘Oxysterol binding protein like 2(OSBPL2), an important regulator in cellular lipid metabolism and transport, was identified as a novel deafness-causal gene in our previous work. To resemble the phenotypic features of OSBPL2 mutation in animal models and elucidate the potential genotypephenotype associations, the OSBPL2-disrupted Bama miniature(BM) pig model was constructed using CRISPR/Cas9-mediated gene editing, somatic cell nuclear transfer(SCNT) and embryo transplantation approaches, and then subjected to phenotypic characterization of auditory function and serum lipid profiles. The OSBPL2-disrupted pigs displayed progressive hearing loss(HL) with degeneration/apoptosis of cochlea hair cells(HCs) and morphological abnormalities in HC stereocilia, as well as hypercholesterolaemia. High-fat diet(HFD) feeding aggravated the development of HL and led to more severe hypercholesterolaemia. The dual phenotypes of progressive HL and hypercholesterolaemia resembled in OSBPL2-disrupted pigs confirmed the implication of OSBPL2 mutation in nonsydromic hearing loss(NSHL) and contributed to the potential linkage between auditory dysfunction and dyslipidaemia/hypercholesterolaemia.
基金supported by the Natural Science Foundation of Tianjin(No.14JCZDJC31900)
文摘A sliding mode control design for a miniature unmanned helicopter is presented. The control objective is to let the helicopter track some predefined velocity and yaw trajectories. A new sliding mode control design method is developed based on a linearized dynamic model. In order to facilitate the control design, the helicopter's dynamic model is divided into two subsystems,such as the longitudinal-lateral and the heading-heave subsystem. The proposed controller employs sliding mode control technique to compensate for the immeasurable flapping angles' dynamic effects and external disturbances. The global asymptotic stability(GAS) of the closed-loop system is proved by the Lyapunov based stability analysis. Numerical simulations demonstrate that the proposed controller can achieve superior tracking performance compared with the proportionalintegral-derivative(PID) and linear-quadratic regulator(LQR) cascaded controller in the presence of wind gust disturbances.