针对最小均方误差准则下(Minimum Mean Square Error,MMSE)判决反馈信道估计算法在多输入多输出正交频分复用(Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing,MIMO-OFDM)低信噪比水声通信环境下存在误码...针对最小均方误差准则下(Minimum Mean Square Error,MMSE)判决反馈信道估计算法在多输入多输出正交频分复用(Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing,MIMO-OFDM)低信噪比水声通信环境下存在误码遗传缺陷,提出了一种基于压缩感知理论的改进的MMSE判决反馈信道估计算法。通过结合浅海水声信道的稀疏性特点,利用编码校验后的信息与原始信息实现了对信道估计的判决反馈更新,采用匹配追踪算法改进MMSE判决反馈追踪信道估计技术,实现了抑制传统判决反馈信道估计算法在迭代更新及传递过程中存在的误码遗传的目的。仿真和水池实验结果证实:改进的MMSE判决反馈追踪信道估计算法不仅可以有效的抑制误码遗传,对抗突发噪声,跟踪信道的缓慢时变,同时大幅降低了导频占用率,提高了通信质量。展开更多
This paper investigates joint design and optimization of both low density parity check (LDPC) codes and M-algorithm based detectors including iterative tree search (ITS) and soft-output M-algorithm (SOMA) in mul...This paper investigates joint design and optimization of both low density parity check (LDPC) codes and M-algorithm based detectors including iterative tree search (ITS) and soft-output M-algorithm (SOMA) in multiple-input multiple-output (MIMO) systems via the tool of extrinsic information transfer (EXIT) charts. First, we present EXIT analysis for ITS and SOMA. We indicate that the extrinsic information transfer curves of ITS obtained by Monte Carlo simulations based on output log-likelihood rations are not true EXIT curves, and the explanation for such a phenomenon is given, while for SOMA, the true EXIT curves can be computed, enabling the code design. Then, we propose a new design rule and method for LDPC code degree profile optimization in MIMO systems. The algorithm can make the EXIT curves of the inner decoder and outer decoder match each other properly, and can easily attain the desired code with the target rate. Also, it can transform the optimization problem into a linear one, which is computationally simple. The significance of the proposed optimization approach is validated by the simulation results that the optimized codes perform much better than standard non-optimized ones when used together with SOMA detector.展开更多
In this paper,an adaptive neural tracking control scheme for a class of uncertain switched multi-input multi-output(MIMO)pure-feedback nonlinear systems is proposed.The considered MIMO pure-feedback nonlinear system c...In this paper,an adaptive neural tracking control scheme for a class of uncertain switched multi-input multi-output(MIMO)pure-feedback nonlinear systems is proposed.The considered MIMO pure-feedback nonlinear system contains input and output constraints,completely unknown nonlinear functions and time-varying external disturbances.The unknown nonlinear functions representing system uncertainties are identified via radial basis function neural networks(RBFNNs).Then,the Nussbaum function is utilized to deal with the nonlinearity issue caused by the input saturation.To prevent system outputs from violating prescribed constraints,the barrier Lyapunov functions(BLFs)are introduced.Also,a switched disturbance observer is designed to make the time-varying external disturbances estimable.Based on the backstepping recursive design technique and the Lyapunov stability theory,the developed control method is verified applicable to ensure the boundedness of all signals in the closed-loop system and make the system output track given reference signals well.Finally,a numerical simulation is given to demonstrate the effectiveness of the proposed control method.展开更多
文摘针对最小均方误差准则下(Minimum Mean Square Error,MMSE)判决反馈信道估计算法在多输入多输出正交频分复用(Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing,MIMO-OFDM)低信噪比水声通信环境下存在误码遗传缺陷,提出了一种基于压缩感知理论的改进的MMSE判决反馈信道估计算法。通过结合浅海水声信道的稀疏性特点,利用编码校验后的信息与原始信息实现了对信道估计的判决反馈更新,采用匹配追踪算法改进MMSE判决反馈追踪信道估计技术,实现了抑制传统判决反馈信道估计算法在迭代更新及传递过程中存在的误码遗传的目的。仿真和水池实验结果证实:改进的MMSE判决反馈追踪信道估计算法不仅可以有效的抑制误码遗传,对抗突发噪声,跟踪信道的缓慢时变,同时大幅降低了导频占用率,提高了通信质量。
基金Supported by the National Basic Research Program of China (Grant No. 2009CB320406)the National Natural Science Foundation of China(Grant No. 60872048)Specialized Major Science and Technology Project of China (Grant Nos. 2008ZX03003-004, 2009ZX03003-009)
文摘This paper investigates joint design and optimization of both low density parity check (LDPC) codes and M-algorithm based detectors including iterative tree search (ITS) and soft-output M-algorithm (SOMA) in multiple-input multiple-output (MIMO) systems via the tool of extrinsic information transfer (EXIT) charts. First, we present EXIT analysis for ITS and SOMA. We indicate that the extrinsic information transfer curves of ITS obtained by Monte Carlo simulations based on output log-likelihood rations are not true EXIT curves, and the explanation for such a phenomenon is given, while for SOMA, the true EXIT curves can be computed, enabling the code design. Then, we propose a new design rule and method for LDPC code degree profile optimization in MIMO systems. The algorithm can make the EXIT curves of the inner decoder and outer decoder match each other properly, and can easily attain the desired code with the target rate. Also, it can transform the optimization problem into a linear one, which is computationally simple. The significance of the proposed optimization approach is validated by the simulation results that the optimized codes perform much better than standard non-optimized ones when used together with SOMA detector.
基金supported by the National Natural Science Foundation of China(6107116361071164+5 种基金6147119161501233)the Fundamental Research Funds for the Central Universities(NP2014504)the Aeronautical Science Foundation(20152052026)the Electronic & Information School of Yangtze University Innovation Foundation(2016-DXCX-05)the Priority Academic Program Development of Jiangsu Higher Education Institutions
基金partially supported by the National Natural Science Foundation of China under Grant No.62203064the Eduction Committee Liaoning Province,China under Grant No. LJ2019002
文摘In this paper,an adaptive neural tracking control scheme for a class of uncertain switched multi-input multi-output(MIMO)pure-feedback nonlinear systems is proposed.The considered MIMO pure-feedback nonlinear system contains input and output constraints,completely unknown nonlinear functions and time-varying external disturbances.The unknown nonlinear functions representing system uncertainties are identified via radial basis function neural networks(RBFNNs).Then,the Nussbaum function is utilized to deal with the nonlinearity issue caused by the input saturation.To prevent system outputs from violating prescribed constraints,the barrier Lyapunov functions(BLFs)are introduced.Also,a switched disturbance observer is designed to make the time-varying external disturbances estimable.Based on the backstepping recursive design technique and the Lyapunov stability theory,the developed control method is verified applicable to ensure the boundedness of all signals in the closed-loop system and make the system output track given reference signals well.Finally,a numerical simulation is given to demonstrate the effectiveness of the proposed control method.