Hydrogenation of lignin-derived phenol to KA oil(the mixture of cyclohexanone(K)and cyclohexanol(A))is attractive yet challenging in the sustainable upgrading of biomass derivatives under mild conditions.Traditional s...Hydrogenation of lignin-derived phenol to KA oil(the mixture of cyclohexanone(K)and cyclohexanol(A))is attractive yet challenging in the sustainable upgrading of biomass derivatives under mild conditions.Traditional supported metal catalysts have been widely studied but the active components on supports often exhibit low recyclability due to their instability under experimental conditions.Here we show fabricating ultrasmall Pt/NiO in the pores of chromium terephthalate MIL-101 as catalysts for hydrogenation of phenol.Impressively,Pt/NiO@MIL-101 achieves catalytic phenol hydrogenation to KA oils of tunable K/A ratios and good reusability under room temperature and atmospheric hydrogen pressure,superior to contrast Pt@MIL-101 and Pt/NiO samples.Such excellent performance mainly originates from the effective adsorption and activation of phenol by coordinatively unsaturated Cr sites and H2 activation on ultrasmall Pt/NiO as well as its effective spillover to the adsorbed phenol over Cr sites for hydrogenation reaction.Substantially,such catalyst also displays the excellent performances for hydrogenation of phenol’s derivatives under mild conditions.展开更多
Carbon dioxide (CO2) adsorption on a standard metal-organic framework MIL-101 and a pentaethylenehexamine modified MIL-101 (PEHA- MIL-101) are investigated and compared in this study. The adsorbent samples were ch...Carbon dioxide (CO2) adsorption on a standard metal-organic framework MIL-101 and a pentaethylenehexamine modified MIL-101 (PEHA- MIL-101) are investigated and compared in this study. The adsorbent samples were characterized by XRD, FT-IR and nitrogen adsorption- desorption isotherms analysis. CO2 adsorption capacity was measured by a volumetric method. MIL-101 and PEHA-MIL-101 exhibited CO2 adsorption capacities of 0.85 and 1.3 mmO1CO2/gadsorbent at 10 bar and 298 K, respectively. It is observed that CO2 adsorption capacity was fairly improved about 50% after amine modification.展开更多
基金the National Key Research and Development Program of China(No.2021YFA1500403)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)+1 种基金the National Natural Science Foundation of China(Nos.52372079,22173024,and 21722102)Youth Innovation Promotion Association CAS(G.D.L.).
文摘Hydrogenation of lignin-derived phenol to KA oil(the mixture of cyclohexanone(K)and cyclohexanol(A))is attractive yet challenging in the sustainable upgrading of biomass derivatives under mild conditions.Traditional supported metal catalysts have been widely studied but the active components on supports often exhibit low recyclability due to their instability under experimental conditions.Here we show fabricating ultrasmall Pt/NiO in the pores of chromium terephthalate MIL-101 as catalysts for hydrogenation of phenol.Impressively,Pt/NiO@MIL-101 achieves catalytic phenol hydrogenation to KA oils of tunable K/A ratios and good reusability under room temperature and atmospheric hydrogen pressure,superior to contrast Pt@MIL-101 and Pt/NiO samples.Such excellent performance mainly originates from the effective adsorption and activation of phenol by coordinatively unsaturated Cr sites and H2 activation on ultrasmall Pt/NiO as well as its effective spillover to the adsorbed phenol over Cr sites for hydrogenation reaction.Substantially,such catalyst also displays the excellent performances for hydrogenation of phenol’s derivatives under mild conditions.
文摘Carbon dioxide (CO2) adsorption on a standard metal-organic framework MIL-101 and a pentaethylenehexamine modified MIL-101 (PEHA- MIL-101) are investigated and compared in this study. The adsorbent samples were characterized by XRD, FT-IR and nitrogen adsorption- desorption isotherms analysis. CO2 adsorption capacity was measured by a volumetric method. MIL-101 and PEHA-MIL-101 exhibited CO2 adsorption capacities of 0.85 and 1.3 mmO1CO2/gadsorbent at 10 bar and 298 K, respectively. It is observed that CO2 adsorption capacity was fairly improved about 50% after amine modification.