期刊文献+
共找到3,265篇文章
< 1 2 164 >
每页显示 20 50 100
Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies 被引量:109
1
作者 Lawrence E. Murr Sara M. Gaytan +6 位作者 Diana A. Ramirez Edwin Martinez Jennifer Hernandez Krista N. Amato Patrick W. Shindo Francisco R. Medina Ryan B. Wicker 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第1期1-14,共14页
Lawrence E. Murr is Mr.J Mrs. Macintosh Murehison Professor and Chairman of the Department of Metallurgical and Materials Engineering and Ph.D. Program Director in the Materials Research Technology Institute at The Un... Lawrence E. Murr is Mr.J Mrs. Macintosh Murehison Professor and Chairman of the Department of Metallurgical and Materials Engineering and Ph.D. Program Director in the Materials Research Technology Institute at The University of Texas at El Paso. Dr. Murr received his B.Sc. in physical science from Albright College, and his B.S.E.E. in electronics, his M.S. in engineering mechanics, and his Ph.D. in solidstate science, all from the Pennsylvania State University. Dr. Murr has published 20 books, over 750 scientific and technical articles in a wide range of research areas in materials science and engineering, environmental science and engineering, manufacturing science and engineering (especially rapid prototype/layered manufacturing), 展开更多
关键词 Selective laser melting Electron beam melting Additive manufacturing microstructurES microstructural architecture
原文传递
Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting 被引量:48
2
作者 R.Casati J.Lemke M.Vedani 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第8期738-744,共7页
Selective laser melting is an additive manufacturing method based on local melting of a metal powder bed by a high power laser beam. Fast laser scans are responsible for severe thermal gradients and high cooling rates... Selective laser melting is an additive manufacturing method based on local melting of a metal powder bed by a high power laser beam. Fast laser scans are responsible for severe thermal gradients and high cooling rates which produce complex hydrodynamic fluid flow. These phenomena affect crystal growth and orientation and are believed to be the cause of material spattering and microstructural defects, e.g. pores and incompletely melted particles. In this work, the microstructure and texture of 316L bars built along two different orientations and the effect of different distribution of defects on their mechanical response and failure mechanisms were investigated. Partially molten powder particles are believed to be responsible for the scattering in elongation to failure, reduced strength, and premature failure of vertical samples. 展开更多
关键词 AISI 316L Additive manufacturing Selective laser melting microstructural analysis Fracture behavior
原文传递
蛹虫草降血糖作用及其机制研究 被引量:35
3
作者 徐雷雷 王静凤 +3 位作者 唐筱 王玉明 傅佳 薛长湖 《中国药理学通报》 CAS CSCD 北大核心 2011年第9期1331-1332,共2页
蛹虫草主要含有虫草素、虫草酸、虫草多糖、SOD等活性物质,具有抗肿瘤、抗炎、镇静催眠、提高机体免疫力、防止衰老、抗氧化等功效。已有研究报道表明,蛹虫草活性提取物具有良好的降血糖作用,但对蛹虫草单用降血糖及其作用机制的研... 蛹虫草主要含有虫草素、虫草酸、虫草多糖、SOD等活性物质,具有抗肿瘤、抗炎、镇静催眠、提高机体免疫力、防止衰老、抗氧化等功效。已有研究报道表明,蛹虫草活性提取物具有良好的降血糖作用,但对蛹虫草单用降血糖及其作用机制的研究少见报道。本实验以蛹虫草为研究对象,观察其对糖尿病大鼠的降血糖作用并对其作用机制进行探讨,以期为蛹虫草的高值化利用提供理论依据。 展开更多
关键词 关键词:蛹虫草 糖尿病 空腹血糖 抗氧化酶 自由基 显微 结构 胰岛Β细胞
下载PDF
A promising new class of irradiation tolerant materials:Ti_2ZrHfV_(0.5)Mo_(0.2) high-entropy alloy 被引量:29
4
作者 Yiping Lu Hefei Huang +9 位作者 Xuzhou Gao Cuilan Ren Jie Gao Huanzhi Zhang Shijian Zheng Qianqian Jin Yonghao Zhao Chenyang Lu Tongmin Wang Tingju Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第3期369-373,共5页
Recently, high-entropy alloys(HEAs) or multi-principal-element alloys with unprecedented physical,chemical, and mechanical properties, have been considered as candidate materials used in advanced reactors due to their... Recently, high-entropy alloys(HEAs) or multi-principal-element alloys with unprecedented physical,chemical, and mechanical properties, have been considered as candidate materials used in advanced reactors due to their promising irradiation resistant behavior. Here, we report a new single-phase bodycentered cubic(BCC) structured Ti_2 ZrHfV_(0.5)Mo_(0.2) HEA possessing excellent irradiation resistance, i.e.,scarcely irradiation hardening and abnormal lattice constant reduction after helium-ion irradiation,which is completely different from conventional alloys. This is the first time to report the abnormal XRD phenomenon of metallic alloys and almost no hardening after irradiation. These excellent properties make it to be a potential candidate material used as core components in next-generation nuclear reactors. The particular irradiation tolerance derives from high density lattice vacancies/defects. 展开更多
关键词 High-entropy alloy IRRADIATION resistance microstructural characterization DEFECTS evolution
原文传递
Phase Transformation Behavior and Microstructural Control of High-Cr Martensitic/Ferritic Heat-resistant Steels for Power and Nuclear Plants: A Review 被引量:27
5
作者 Xiaosheng Zhou Chenxi Liu +2 位作者 Liming Yu Yongchang Liu Huijun Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第3期235-242,共8页
The martensitic/ferritic steels have been used as boiler and turbine materials in power plants, and also been selected as potential materials for structural materials in nuclear reactors. In this paper, the kinetic an... The martensitic/ferritic steels have been used as boiler and turbine materials in power plants, and also been selected as potential materials for structural materials in nuclear reactors. In this paper, the kinetic analysis of the martensite formation and microstructural control of high-Cr martensitic/ferritic steels are reviewed. A modular approach, incorporating Fisher partitioning nucleation and anisotropic growth for impingement, was proposed to describe the martensite formation kinetics under different cooling rates.The kinetic analysis suggested a thermal-activated growth feature occurring during the martensitic transformation of martensitic steels. The microstructure can be tuned by composition optimization and various combinations of heat treatment parameters(temperature, time, severe and minor deformation).For the application in power plant, the potential of boundary-design, refinement of original austenite grain size and the final martensitic lath, pinning effect of stable carbides, in improving the performances of martensitic/ferritic steels at elevated temperatures should be investigated more thoroughly.Furthermore, efforts should be made to explore the effects of retained austenite on the improvement of high-temperature creep strength. For the application of nuclear plants, attempts should also be made to produce Fe powders with uniformly distributed oxide particles by chemical reactions. 展开更多
关键词 Martensitic/ferritic steels microstructural contro
原文传递
Effect of heat treatment on microstructure and tensile properties of A356 alloys 被引量:27
6
作者 彭继华 唐小龙 +1 位作者 何健亭 许德英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期1950-1956,共7页
Two heat treatments of A356 alloys with combined addition of rare earth and strontium were conducted.T6 treatment is a long time treatment(solution at 535 ℃ for 4 h + aging at 150 ℃ for 15 h).The other treatment ... Two heat treatments of A356 alloys with combined addition of rare earth and strontium were conducted.T6 treatment is a long time treatment(solution at 535 ℃ for 4 h + aging at 150 ℃ for 15 h).The other treatment is a short time treatment(solution at 550 ℃ for 2 h + aging at 170 ℃ for 2 h).The effects of heat treatment on microstructure and tensile properties of the Al-7%Si-0.3%Mg alloys were investigated by optical microscopy,scanning electronic microscopy and tension test.It is found that a 2 h solution at 550 ℃ is sufficient to make homogenization and saturation of magnesium and silicon in α(Al) phase,spheroid of eutectic Si phase.Followed by solution,a 2 h artificial aging at 170 ℃ is almost enough to produce hardening precipitates.Those samples treated with T6 achieve the maximum tensile strength and fracture elongation.With short time treatment(ST),samples can reach 90% of the maximum yield strength,95% of the maximum strength,and 80% of the maximum elongation. 展开更多
关键词 Al-Si casting alloys heat treatment tensile property microstructural evolution
下载PDF
Effect of solution plus aging heat treatment on microstructural evolution and mechanical properties of near-β titanium alloy 被引量:20
7
作者 Chuan WU Mei ZHAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期997-1006,共10页
The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show ... The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show that the volume fraction of the primary α(αp) phase decreases with the increase of solution temperature, and the length of the secondary α phase (αs) decreases while its width increases with the increase of aging temperature. Yield and tensile strengths decrease with the increase of solution temperature, while increase with the increase of aging temperature. A good balance of tensile strength and ductility of the alloy is obtained under solution of 800℃ for 2 h plus aging of 640℃ for 8 h, in which the tensile strength is 1434 MPa and the elongation is 7.7%. The coarsening αs phase makes crack propagation paths deflected and tortuous, which increases the crack propagation resistance and improves the ductility and fracture toughness. 展开更多
关键词 Ti.5Al.5Mo.5V.3Cr.1Zr titanium alloy hot treatment SOLUTION AGING microstructural evolution mechanical properties fracture mechanism
下载PDF
DIRECTIONALLY SOLIDIFIED MICROSTRUCTURE OF AN ULTRA-HIGH TEMPERATURE Nb-Si-Ti-Hf-Cr-Al ALLOY 被引量:15
8
作者 P.Guan X.P.Guo +3 位作者 X.Ding J.Zhang L.M.Gao K. Kusabiraki 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期450-454,共5页
The directionally solidified samples of an ultra-high temperature Nb-Si-Ti-Hf-Cr-Al alloy have been prepared with the use of an electron beam floating zone melting (EBFZM) furnace, and their microstructural characteri... The directionally solidified samples of an ultra-high temperature Nb-Si-Ti-Hf-Cr-Al alloy have been prepared with the use of an electron beam floating zone melting (EBFZM) furnace, and their microstructural characteristics have been analyzed. All the primary dendrites of Nb solid solution (Nbss), eutectic colonies of Nba, plus (Nb, Ti)3 Si/(Nb, Ti)5 Si3 and chains of (Nb, Ti)3 Si/(Nb, Ti)5 Si3 plates align along the growth direction of the samples. With increasing of the withdrawing rate, the microstructure is refined, and the amounts of Nbss+ (Nb, Ti)3 Si/(Nb, Ti)5 Si3 eutectic colonies and (Nb, Ti)3 Si/(Nb, Ti)5 Si3 plates increase. There appear nodes in the (Nb, Ti)3 Si/(Nb, Ti)5 Si3 plates. 展开更多
关键词 ultra-high temperature alloy Nb-Si based alloy in situ composite unidirectional solidification microstructural evolution
下载PDF
Microstructual evolution and stability of second generation single crystal nickel-based superalloy DD5 被引量:18
9
作者 Ren-jie CUI Zhao-hui HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2079-2085,共7页
The microstructual evolution and stability of a second generation single crystal (SC) nickel-based superalloy DD5 with minor grain boundary (GB) strengthening elements (C, B and Hf) were studied as a function of as-ca... The microstructual evolution and stability of a second generation single crystal (SC) nickel-based superalloy DD5 with minor grain boundary (GB) strengthening elements (C, B and Hf) were studied as a function of as-cast, heat treatment and thermal exposure. The microstructure and composition of the alloy were investigated by optical microscopy, scanning electron microanalysis (SEM), electron probe microanalysis (EPMA), energy dispersive spectrometry (EDS) and extraction analysis. In the as-cast condition,the microstructure observations and composition analysis showed that γ phase was the primary solidification phase and there were three microsegregations in the metal matrix. The morphology of these microsegregations depended on element segregations. After heat treatment, the dendrite cores contained fine and cuboidal-shaped γ′ particles with an average edge length of about 0.5 μm, whileinterdendritic regions contained irregularly-shaped γ′ particles and MC/M23C6 carbides. The mass fraction of γ′ phases was 61.685%.After exposure at 980 °C for 1000 h, no TCP phase was observed in both dendritic and interdendritic regions, indicating a good microstructual stability of the DD5 alloy at 980 °C. 展开更多
关键词 single crystal superalloy DD5 alloy microstructural evolution heat treatment thermal exposure
下载PDF
Formation and Evolution of Non-dendritic Microstructures of Semisolid Alloys Prepared by Shearing/Cooling Roll Process 被引量:13
10
作者 Shuncheng WANG Furong CAO Renguo GUAN Jinglin WEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第2期195-199,共5页
The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the micros... The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the microstructures of semi-solid billets transform from coarse dendrites into fine equiaxed grains as the pouring temperature of molten alloy decreases o.r roll-shoe cavity height is reduced. From the inlet to the exit of roll-shoe cavity, microstructure of semi-solid slurry near the shoe surface is in the order of coarse dendrites, degenerated dendrites or equiaxed grains, but fine equiaxed grains are near the roll surface. Microstructural evolution of semi-solid slurry prepared by SCR process is that the molten alloy nucleates and grows into dendrite firstly on the roll and shoe's surface. Under the shearing and stirring given by the rotating roll, the dendrites crush off and disperse into the melt. Under the shearing and stirring on semi-solid slurry with high volume fraction of solid, the dendrite arms fracture and form equiaxed grain microstructures. 展开更多
关键词 Semi-solid metal processing Non-dendrite microstructural evolution Shearing and stirring Aluminum alloy
下载PDF
Microstructural zones and tensile characteristics of friction stir welded joint of TC4 titanium alloy 被引量:16
11
作者 刘会杰 周利 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第10期1873-1878,共6页
TC4 titanium alloy was friction stir welded using a W-Re pin tool,and the defect-free weld was produced with proper welding parameters.The joint consists of stir zone,heat affected zone and base material.The stir zone... TC4 titanium alloy was friction stir welded using a W-Re pin tool,and the defect-free weld was produced with proper welding parameters.The joint consists of stir zone,heat affected zone and base material.The stir zone is characterized by equiaxed dynamically recrystallized α phases and transformed β phases with fine α+β lamellar microstructure.The microstructure of the heat-affected zone is similar to that of the base material,but there is an increase in the volume fraction of β.Transverse tensile strength of the joint is 92% that of the base material,and the joint is fractured in the stir zone and the fracture surface possesses typical plastic fracture characteristics.The stir zone is the weakest part of the joint,through which the tensile characteristics of the TC4 joint can be explained. 展开更多
关键词 friction stir welding titanium alloy microstructural zones tensile characteristics
下载PDF
Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treatments 被引量:13
12
作者 Xiang-Peng Xiao Bai-Qing Xiong +3 位作者 Qiang-Song Wang Guo-Liang Xie Li-Jun Peng Guo-Xing Huang 《Rare Metals》 SCIE EI CAS CSCD 2013年第2期144-149,共6页
The effect of thermomechanical treatments on the microstructures and properties of Cu-2.1Ni-0.5Si- 0.2Zr alloy was investigated. The hot-rolled plates were solution treated at 920 ℃ for 1.5 h, quenched into water, co... The effect of thermomechanical treatments on the microstructures and properties of Cu-2.1Ni-0.5Si- 0.2Zr alloy was investigated. The hot-rolled plates were solution treated at 920 ℃ for 1.5 h, quenched into water, cold rolled by 70 % reduction in thickness, and then aged at 400, 450 and 500 ℃for various times. The variation in tensile strength and electrical conductivity of the alloy was measured as a function of the aging time. The results show the peak strength value of 665 MPa for the alloy aged at 450 ℃ for 2 h. However, the electrical conductivity is observed to reach a maximum of 47 % IACS aged at 450℃for 8 h. OM, SEM, and TEM were used for microstructural inspection of the alloy. Precipitation occurs preferentially at deformation bands in the cold-rolled alloy. Properties behavior is discussed in the light of microstructural features. 展开更多
关键词 Cu-Ni-Si-Zr alloy Precipitation ELECTRICALCONDUCTIVITY Tensile strength microstructural features
下载PDF
The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet 被引量:13
13
作者 Qingshan Yang Bin Jiang +5 位作者 Bo Song Zujian Yu Dewei He Yanfu Chai Jianyue Zhang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第2期446-458,共13页
The grain orientation control via twinning activity on deformation features is of great significance to offer a key insight into understanding the deformation mechanism of Mg alloy sheets.The{10–12}twinning were perf... The grain orientation control via twinning activity on deformation features is of great significance to offer a key insight into understanding the deformation mechanism of Mg alloy sheets.The{10–12}twinning were performed by pre-strain paths,i.e.,tension(6%)and compression(5%)perpendicular to the c-axis along extrusion direction(ED),to investigate the microstructural evolution and mechanical properties of AZ31 Mg alloy sheets.The distinction in the texture evolution and strain hardening behavior was illustrated in connection with the pre-strain paths for the activities of twinning and slip.The result shows that the activation of the deformation mode was closely bound up with the grain orientation and the additional applied load direction.The{10–12}twin-texture components with c-axis//ED were generated by precompression,which can provide an appropriate alternative to accommodate the thin sheet thickness strain and enhance the room temperature formability of Mg alloy sheet. 展开更多
关键词 Mg alloy Orientation control microstructural evolution TEXTURE Stretch formability
下载PDF
Microstructural evolution,mechanical properties,and corrosion resistance of a heat-treated Mg alloy for the bio-medical application 被引量:14
14
作者 Mohammad Janbozorgi Kimia Karimi Taheri Ali Karimi Taheri 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第1期80-89,共10页
During the recent years,some Mg based alloys have extensively been considered as a new generation of degradable and absorbable bio-medical materials.In this work,the Mg-2Zn-1Gd-1Ca(wt%)alloy as a new metallic bio-mate... During the recent years,some Mg based alloys have extensively been considered as a new generation of degradable and absorbable bio-medical materials.In this work,the Mg-2Zn-1Gd-1Ca(wt%)alloy as a new metallic bio-material was produced by the casting process followed by the heat treatment.The samples of the alloy were solution treated at temperatures of 500,550,and 600°C and then quench aged at temperatures of 125,150,and 175°C.The results of SEM-EDS examinations indicated that the alloy microstructure consists ofα-Mg matrix and the Ca_(2)Mg_(6)Zn_(3)and Mg_(3)Gd_(2)Zn_(3)secondary phases.With regard to the results of Vickers hardness test,the temperatures of 500°C and 150°C were selected as the optimum solutionizing and aging temperatures,respectively.Moreover,the dissolution of casting precipitates and production of lattice distortion occurring after the solution treatment led to the reduction in ultimate shear strength up to 21%.But,the precipitation hardening and morphological changes taking place during the aging treatment improved the ultimate shear strength up to 32%.Furthermore,the results of electro-chemical and weight-loss measurements in a simulated body fluid indicated that the heat-treated alloy is a promising candidate for the Mg based alloys recently considered for the bio-medical applications. 展开更多
关键词 Mg alloys Bio-medical applications microstructural evolution Mechanical properties Corrosion resistance
下载PDF
Microstructural evolution of new type Al-Zn-Mg-Cu alloy with Er and Zr additions during homogenization 被引量:13
15
作者 Hao WU Sheng-ping WEN +4 位作者 Jun-tai LU Zhen-peng MI Xian-long ZENG Hui HUANG Zuo-ren NIE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1476-1482,共7页
A comprehensive study on the microstructural evolution of a new type Al-Zn-Mg-Cu-Er-Zr alloy duringhomogenization was conducted by optical microscope,scanning electron microscope,transmission electron microscopy and X... A comprehensive study on the microstructural evolution of a new type Al-Zn-Mg-Cu-Er-Zr alloy duringhomogenization was conducted by optical microscope,scanning electron microscope,transmission electron microscopy and X-raydiffraction analysis.The results show that serious segregation exists in as-cast alloy,and the primary phases are T(AlZnMgCu),S(Al2CuMg)and Al8Cu4Er,which preferentially locate in the grain boundary regions.The soluble T(AlZnMgCu)and S(Al2CuMg)phases dissolve into the matrix gradually during single-stage homogenized at465°C with prolonging holding time,but the residualAl8Cu4Er phase cannot dissolve completely.Compared with the single-stage homogenization,both a finer particle size and a highervolume fraction of L12-structured Al3(Er,Zr)dispersoids can be obtained in the two-stage homogenization process.A suitablehomogenization scheme for the present alloy is(400°C,10h)+(465°C,24h),which is consistent with the results of homogenizationkinetic analysis. 展开更多
关键词 Al-Zn-Mg-Cu-Er-Zr alloy HOMOGENIZATION microstructural evolution primary phases Al3(Er Zr) particles
下载PDF
Microstructural evolution and stress state related to mechanical properties of electron beam melted Ti-6Al-4V alloy modified by laser shock peening 被引量:13
16
作者 Liang Lan Xinyuan Jin +2 位作者 Shuang Gao Bo He Yonghua Rong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第15期153-161,共9页
This work characterizes microstructural evolutions of electron beam melted(EBM) Ti-6 Al-4 V alloy modified via laser shock peening(LSP).The depth stress distribution and tensile properties of EBM Ti-6 Al-4 V alloy wer... This work characterizes microstructural evolutions of electron beam melted(EBM) Ti-6 Al-4 V alloy modified via laser shock peening(LSP).The depth stress distribution and tensile properties of EBM Ti-6 Al-4 V alloy were measured before and after LSP.The results indicate that microstructure consists of β phase with 7.2%±0.4% vol.% and balance α lamellar in EBM sample,and the α lamella was refined into nano-equiaxed grains and submicro-equiaxed grains after LSP.The dominant refinement mechanism is revealed during LSP.Stacking faults were found in the LSP-treated sample,and their corresponding planes were determined as(0001) basal plane,(1010) prismatic plane,and(1011) pyramidal plane obtained by high resolution transmission electron microscopy.The subgrains and high-angle grains formed during dynamic recrystallization were identified by selected area electron diffraction pattern.The LSP treatment produces a significantly residual compressive stress approximately-380 MPa with the depth of compressive stress layer reaching 450 μm.Strength and elongation of the EBM sample were significantly increased after LSP.The strength and ductility enhancements are attributed to compre s sive stress,grain refinement and grain gradient distribution of α phase. 展开更多
关键词 Electron beam melting Ti-6Al-4V alloy Laser shock peening microstructural evolution Stress state Mechanical properties
原文传递
Microstructural evolution and mechanical properties of Mg-5Y-5Gd-xNd-0.5Zr magnesium alloys at different states 被引量:11
17
作者 LI Yongjun ZHANG Kui +2 位作者 ZHANG Ya LI Xinggang MA Minglong 《Rare Metals》 SCIE EI CAS CSCD 2010年第3期317-322,共6页
The microstructural evolution and mechanical properties of Mg-5Y-5Gd-xNd-0.5Zr magnesium alloys at different states were studied.The results reveal that island compounds at the grain boundaries of the as-cast alloys m... The microstructural evolution and mechanical properties of Mg-5Y-5Gd-xNd-0.5Zr magnesium alloys at different states were studied.The results reveal that island compounds at the grain boundaries of the as-cast alloys mainly were Mg24Y5,Mg41Nd5,and Mg5Gd phases.After homogenization at 808 K for 24 h,the distribution of the island compounds became discrete and Mg5Gd phases mostly decomposed and dissolved.With hot extrusion,the grain size was refined to about 20 μm on average,and both the strength and elongation were greatly improved.After ageing at 523 K for 5 h,the strength of different extruded alloys largely increased but the elongation decreased.With the increase of neodymium content,the strength of the alloys at different states increased.The content of neodymium element had an obvious effect on the elongation of the designed alloys.In the designed alloys,the Mg-5Y-5Gd-2.2Nd-0.5Zr alloy exhibited the best combination properties and its ultimate tensile strength,yield strength,and elongation could reach 380 MPa,285 MPa,and 9.0%,respectively. 展开更多
关键词 magnesium alloys NEODYMIUM EXTRUSION HOMOGENIZATION microstructural evolution mechanical properties
下载PDF
An insight into microstructural heterogeneities formation between weld subregions of laser welded copper to stainless steel joints 被引量:12
18
作者 Saranarayanan RAMACHANDRAN A.K.LAKSHMINARAYANAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第3期727-745,共19页
The effect of laser beam welding(LBW) process on the microstructure-mechanical property relationship of a dissimilar weld between the copper(Cu) and stainless steel(SS) was investigated.Backscattered electron(BSE) bas... The effect of laser beam welding(LBW) process on the microstructure-mechanical property relationship of a dissimilar weld between the copper(Cu) and stainless steel(SS) was investigated.Backscattered electron(BSE) based scanning electron microscopy(SEM) imaging was used to characterize the highly heterogeneous microstructural features across the LBW(Cu-SS) weld.The BSE analysis thoroughly evidenced the complex microstructures produced at dissimilar weld interfaces and fusion zone along with the compositional information.Widely different grain growths from coarse columnar grains to equiaxed ultrafine grains were also evident along the Cu-weld interface.A highresolution electron backscattered diffraction(EBSD) analysis confirmed the existence of the grain refinement mechanism at the Cu-weld interface.Both tensile and impact properties of the dissimilar weld were found to be closely aligned with the property of Cu base metal.Microhardness gradients were spatially evident in the non-homogeneous material composition zones such as fusion zone and the Cu-weld interface regions.The heterogeneous nucleation spots across the weld sub-regions were clearly identified and interlinked with their microhardness measurements for a holistic understanding of structure-property relationships of the local weld sub-regions.The findings were effectively correlated to achieve an insight into the local microstructural gradients across the weld. 展开更多
关键词 laser beam welding copper stainless steel microstructural characterization tensile property impact toughness
下载PDF
Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing 被引量:12
19
作者 L.B.Tong J.H.Chu +5 位作者 W.T.Sun Z.H.Jiang D.N.Zou S.F.Liu S.Kamado M.Y.Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期1007-1018,共12页
In the current study,a homogenous ultra-fine grained microstructure with average grain size of 1.0μm is achieved in the Mg-Zn-Ca-Mn alloy through the reduplicative equal channel angular pressing(ECAP)at 300℃,and the... In the current study,a homogenous ultra-fine grained microstructure with average grain size of 1.0μm is achieved in the Mg-Zn-Ca-Mn alloy through the reduplicative equal channel angular pressing(ECAP)at 300℃,and the mechanical properties are remarkably improved,with room-temperature yield strength of 269.6 MPa and elongation of 22.7%.The twinning deformation results in a discontinuous recrystallization behavior in the initial stage of ECAP.With further deformation,the continuously dynamic recrystallization contributes to an obvious grain refinement effect.The activation of non-basal slip system leads to the formation of a unique basal texture,which is related to the elevated ECAP temperature and the decreased grain size.Both grain refinement and texture modification derived from ECAP process result in the increase of yield strength,while the cracked secondary phase particles are beneficial to the enhanced ductility,through reducing the stress concentration and hindering premature failure. 展开更多
关键词 Mg alloy ECAP microstructural evolution High strength Superior ductility
下载PDF
Microstructural evolution of ultra-high strength Al-Zn-Cu-Mg-Zr alloy containing Sc during homogenization 被引量:11
20
作者 李文斌 潘清林 +2 位作者 肖艳苹 何运斌 刘晓艳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2127-2133,共7页
The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectr... The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),X-ray diffraction(XRD) and differential scanning calorimetry(DSC).The results show that severe dendritic segregation exists in Al-Zn-Cu-Mg-Sc-Zr alloy ingot.There are a lot of eutectic phases at grain boundary and the distribution of the main elements varies periodically along interdendritic region.The main eutectic phases at grain boundary are Al7Cu2Fe phase and T(Al2Mg3Zn3).The residual phases are dissolved into the matrix gradually during homogenization with increasing temperature and prolonging holding time,which can be described by a constitutive equation in exponential function.The overburnt temperature of the alloy is 473.9 ℃.The optimum parameters of homogenization are 470 ℃ and 24 h,which is consistent with the result of homogenization kinetic analysis. 展开更多
关键词 Al-Zn-Cu-Mg-Sc-Zr alloy HOMOGENIZATION microstructural evolution overburnt temperature homogenization kinetics
下载PDF
上一页 1 2 164 下一页 到第
使用帮助 返回顶部