Mg-Gd-Y-Zr alloys with high strength fall within narrow composition range.The present paper explains their composition rule by establishing the cluster-plus-glue-atom unit of Gd-containing Mg solid solution with the a...Mg-Gd-Y-Zr alloys with high strength fall within narrow composition range.The present paper explains their composition rule by establishing the cluster-plus-glue-atom unit of Gd-containing Mg solid solution with the aid of Mg matrix and Mg_(5) Gd precipitate phase.First,based on the structural homologue between Gd-containing Mg solid solution and Mg_(5) Gd precipitate phase and in combination with our previously established method for calculating the glue atoms,[Gd-Mg_(12)]Mg_(5) is obtained as the chemical unit of Gd-containing Mg solid solution.Then,seven compositions are designed using different combinations of this unit and that of pure Mg[Mg-Mg_(12)Mg3.After a systematic experimental investigation on the microstructure and mechanical property evolutions as a function of the unit proportions,it is revealed that the Mg-10.1 Gd-3.3 Y-0.9 Zr alloy,being issued from equi-proportion mixing of the two units,shows the strongest tendency of precipitation and reaches the highest strength of 374 MPa after aging.The composition and strength of this alloy are quite close to GW103 K which is well recognized for its general mechanical performance in Mg-Gd-Y-Zr system.展开更多
The effect of cooling rate on the transition of dendrite morphology of a Mg-6Gd (wt%) alloy was semiquantitatively analyzed under a constant temperature gradient by using synchrotron X-ray radiographic technique. Re...The effect of cooling rate on the transition of dendrite morphology of a Mg-6Gd (wt%) alloy was semiquantitatively analyzed under a constant temperature gradient by using synchrotron X-ray radiographic technique. Results show that equiaxed dendrites, including exotic 'butterfly-shaped' dendrite morphology, dominate at high cooling rate (〉1 K/s). When the cooling rate decreases in the range of 0.5-1 K/s, the equiaxed-to-columnar transition takes place, and solute segregates at the center of two long dendrite arms (LDA) of the 'butterfly-shaped' dendrite. When the cooling rate is lower than 0.3 K/s, directional solidification occurs and the columnar dendritic growth direction gradually rotates from the crystalline axis to the thermal gradient direction with an increase in cooling rate. Meanwhile, interface moves faster but the dendrite arm spacing decreases. Floating, collision and rotation of dendrites under convection were also studied in this work.2018 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
Composition homogenization in solid solution is important for industrial alloys. In the present work, a solute homogenization model is proposed based on the chemical short-range-order tendency in Mg-Gd- based alloys. ...Composition homogenization in solid solution is important for industrial alloys. In the present work, a solute homogenization model is proposed based on the chemical short-range-order tendency in Mg-Gd- based alloys. After a calculation using the cluster-plus-glue-atom model, the stable Mg-Gd structural unit is derived, [Gd-Mg12 ]Mg6, where one solute Gd is nearest-neighbored with twelve Mg atoms to form the characteristic hcp cluster [Gd-Mg12 ] and this cluster is matched with six Mg glue atoms. Such a local unit is then mixed with [Mg-Mg12 ]Mg3, the stable unit for pure Mg. Assuming that the Gd-containing units are arranged in fcc- or bcc-like lattice points and the Mg units in their octahedral interstices, three proportions between the two units are obtained, 1:1, 2:3, and 1:3, which constitute three solute homogenization modes. The prevailing Mg-Gd-based alloys are consequently classified into three groups, respectively exemplified by GW103 K (Mg-10Gd-3Y-0.4Zr, wt%), GW83 K (Mg-SGd-3Y-0.4Zr), and GW63 K (Mg-6Gd- 3Y-0.4Zr). Mg-Gd-Y-Zr alloys were designed following the model (where Y and Zr were also added in substitution for Gd) and prepared by permanent-mould casting. According to their mechanical properties, the 1:3 alloy (Mg-5.9Gd-1.6Y-0.4Zr) shows the best comprehensive properties (ultimate tensile strength 305 MPa, yield strength 186 MPa, elongation 9.0%) in solution plus ageing state.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
In this paper,a comprehensive understanding of stable and metastable phase equilibria in binary Mg-Gd system was conducted with an aid of the CALculation of PHAse Diagram(CALPHAD)modeling.Firstly,thermodynamic descrip...In this paper,a comprehensive understanding of stable and metastable phase equilibria in binary Mg-Gd system was conducted with an aid of the CALculation of PHAse Diagram(CALPHAD)modeling.Firstly,thermodynamic descriptions of all the stable phases in the Mg-Gd system were re-assessed by considering all the experimental data in the literature.The discrepancy between the phase equilibria and thermochemical properties existing in the previous assessments was eliminated,and the better agreement with the experimental data was achieved in the present assessment.Secondly,the Gibbs energies for metastable β"-Mg3Gd and β"-Mg7Gd were constructed based on the first-principles and CALPHAD computed results as well as their correlation,and then incorporated into the CALPHAD descriptions.The model-predicted solvuses of(Mg)in equilibrium with the metastable β"-Mg7Gd and β'-Mg7Gd compounds showed very good agreement with the limited experimental data.Finally,the presently obtained thermodynamic descriptions of both stable and metastable phases in the binary Mg-Gd system were further validated by realizing the quantitative Scheil-Gulliver solidification simulations of 5 as-cast Mg-Gd alloys,and the successful prediction of the precipitation sequences in Mg-15Gd and Mg-12Gd alloys during the aging process.展开更多
The effect of Nd addition on the microstructure and mechanical properties of as-extruded Mg-9Gd-0.5Zr(wt.%) alloy was investigated. The Mg-9Gd-0.5Zr and Mg-9Gd-2Nd-0.5Zr alloys were extruded at 673 K. The elongated no...The effect of Nd addition on the microstructure and mechanical properties of as-extruded Mg-9Gd-0.5Zr(wt.%) alloy was investigated. The Mg-9Gd-0.5Zr and Mg-9Gd-2Nd-0.5Zr alloys were extruded at 673 K. The elongated non-dynamic recrystallized(un-DRXed) grains disappear after adding Nd, and uniformly distributed dynamic recrystallized grains with a grain size of 1.68 μm were obtained in the alloy. In addition, numerous nano-Mg5(Gd,Nd)particles were found to precipitate dynamically in the Mg-9Gd-2Nd-0.5Zr alloy, which gave rise to the dynamic recrystallization process via providing nucleation energy through hindering the release of deformation energy and promoting an increase in the strength through the Orowan strengthening mechanism. Moreover, the dynamically recrystallized(DRXed) grains have a weak texture, which plays a significant role in improving the ductility. Therefore,the Nd addition favors the improvement of strength and elongation for the as-extruded Mg-9Gd-0.5Zr alloy,simultaneously.展开更多
The effects of semi-solid isothermal process parameters on the microstructure evolution of Mg-Gd rare earth alloy produced by strain-induced melt activation(SIMA)were investigated.The formation mechanism of the partic...The effects of semi-solid isothermal process parameters on the microstructure evolution of Mg-Gd rare earth alloy produced by strain-induced melt activation(SIMA)were investigated.The formation mechanism of the particles in the process of the isothermal treatment was also discussed.The results show that the microstructure of the as-cast alloy consists ofα-Mg solid solution, Mg5RE and Mg24RE5(Gd,Y,Nd)phase.After being extruded with an extrusion ratio of 14:1 at 380℃,the microstructure of Mg-Gd alloy changes from developed dendrites to near-equiaxed grains.The liquid volume fraction of the semisolid slurry gradually increases with elevating isothermal temperature or prolonging isothermal time during the partial remelting.To obtain an ideal semisolid slurry,the optimal process parameters for the Mg-Gd alloy should be 630℃for isothermal temperature and 30 min for the corresponding time,respectively,where the volume fraction of the liquid phase is 52%.展开更多
This research studied the mechanisms of Ca and Zn microalloying on the enhancement of ductility of extruded Mg-Gd sheet by combing electron backscattered diffraction and slip trace analysis.The ductility and microstru...This research studied the mechanisms of Ca and Zn microalloying on the enhancement of ductility of extruded Mg-Gd sheet by combing electron backscattered diffraction and slip trace analysis.The ductility and microstructure of extruded Mg-0.6Gd and Mg-0.6Gd-0.3Ca-0.2Zn(wt%)sheets were investigated.Basal slip was the main deformation mode under investigation.Ca and Zn microalloying increased the frequency of grain boundaries(GBs)with misorientation angles(θs)<35°,promoted slip transfer across GBs and restricted the basal slip localization.In addition,there were a higher number of GB cracks homogeneously distributed in the Mg-0.6Gd sheet than in the Mg-0.6Gd-0.3Ca-0.2Zn sheet,attributed to the increased cohesion of GBs.The enhancement of basal slip,the suppression of slip localization and the suppression of GB cracking were contributed to the increased ductility for Mg-0.6Gd-0.3Ca-0.2Zn sheet.展开更多
Mg-20Gd( %, mass fraction)samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is main...Mg-20Gd( %, mass fraction)samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is mainly composed of supersaturated a-Mg solid solution phase and the as-cast ingot mainly contains a-Mg solid solution and MgsGd phase. The differential scanning calorimeter (DSC) curve of the ribbon exhibits a small exothermic peak in the temperature range from 630 to 680 K, which indicates that the ribbon contains a metastable phase (amorphous). Tensile strength at room temperature of the melt-spun ribbon and as-cast specimen are 308 and 254 MPa, respectively. The elongations of the two samples are less than 2 %. The fracture surfaces demonstrate that the fracture mode of the as-cast Mg-20Gd is a typical cleavage fracture and that of the melt-spun sample is a combination of brittle fracture and ductile fracture.展开更多
Mg-Gd alloy particle has exhibited its unique combustion properties as the fuel of Mg/Teflon/Viton(MTV).Mg-Gd alloy/Teflon/Viton(MGTV)could burn at lower ambient pressure than MTV.To further investigate the reaction o...Mg-Gd alloy particle has exhibited its unique combustion properties as the fuel of Mg/Teflon/Viton(MTV).Mg-Gd alloy/Teflon/Viton(MGTV)could burn at lower ambient pressure than MTV.To further investigate the reaction of MGTV in air,it was investigated via thermo gravity-differential scanning calorimetry(TG-DSC).Meanwhile,the morphologies and element distributions on the alloy surface during the reaction of MGTV in air were investigated via scanning electronic microscope-mapping-electronic differential spectrometer.Meanwhile,a similar experimental protocol on the Mg-Gd alloy particle during oxidation was also applied.The results showed that owning to a protective oxide shell,the onset oxidation temperature of Mg-Gd alloy is higher than Mg.However,the onset oxidation temperature of the exceeded Mg-Gd alloy in MGTV is significantly lower than that of the exceeded Mg in MTV.It was due to the existence of GdOF,which could significantly lower the oxidation temperature of the exceeded fuel.Furthermore,a possible reaction mechanism was proposed.The fascinating oxidation properties of Mg-Gd alloy suggested its promising applications in energetic materials.展开更多
A bimodal-structured Mg^(-1)5Gd binary alloy with 45%volume fraction of elongated grains and 55%of dynamically recrystallized(DRXed)grains is fabricated by the extrusion process.The precipitating behavior correlating ...A bimodal-structured Mg^(-1)5Gd binary alloy with 45%volume fraction of elongated grains and 55%of dynamically recrystallized(DRXed)grains is fabricated by the extrusion process.The precipitating behavior correlating with the evolution of mechanical properties is systematically characterized during the subsequent aging treatment at 200°C.The extruded alloy presents an outstanding strength with tensile yield strength of 466 MPa and ultimate tensile strength of 500 MPa at peak aging condition,while the elongation drops from 9.2%in extrusion state to 3.1%.It is found there obviously exist a rapidly decreasing range of ductility at the early stage of aging.Just during this time,the nano precipitates form preferentially at lamellar dislocation boundaries(LDBs)within the elongated grains,but there is no dense and uniform precipitation in the matrix.The results suggest that the low elongation in the aged Mg^(-1)5Gd alloy is mainly attributed to the nano precipitates prior formed at the LDBs with a high density in the elongated grains.The related mechanism has been clarified.展开更多
Heterostructure metals as a new class of materials can effectively break the traditional strength–ductility trade-off dilemma. In this study, the extruded sheet with the small extrusion ratio(ER) of 3.9(ER3.9)present...Heterostructure metals as a new class of materials can effectively break the traditional strength–ductility trade-off dilemma. In this study, the extruded sheet with the small extrusion ratio(ER) of 3.9(ER3.9)presented a heterogeneous lamella structure(HLS) and texture, where the fine dynamical recrystallized(DRXed) grains formed a random texture and coarse un-DRXed grains exhibited a strong basal texture.The ER3.9 sample presented an excellent combination of strength and ductility. The texture strengthening in coarse grains and hetero-deformation induced(HDI) strengthening contributed to the enhanced strength of the ER3.9 sample besides grain refinement. The improving ductility mainly stems from the weakened texture in fine grains. Interestingly, in coarse grains, the strong basal texture, the occurrence of cross slip, low stacking fault energy(SFE), and dislocation pinned by precipitates weaken the HDI hardening effect. While the traditional dislocation hardening mainly generated by fine grains dominates overall strain hardening. Meanwhile, the activation of non-basal slips, especially pyramidal <c + a> slip,and the generation of cross slips in fine grains benefit for coordinating plastic deformation. The ability for coordinate plastic deformation in fine grains is higher than that of coarse grains, which was confirmed by the digital image correlation technology. This work will promote the development of the heterogeneous theory in textured Mg alloys.展开更多
Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will tr...Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will transform to other phases, resulting in severe performance degradation. In this study, we investigated the effect of precipitation state achieved by different heat treatments on high temperature tensile and creep behaviors of the Mg-15Gd alloy by comparing the properties of the as-cast, solid-solutioned(T4) and peak-aged(T6) alloys. The results showed that the tensile mechanical properties of the T6 alloy were always highest from room temperature to 300 ℃, in spite of an abnormal strength increase with temperature existed in the T4 alloy. For tensile creep properties, the T6 alloy exhibited the lowest steady creep rate below 235 ℃ while the T4 alloy possessed the best properties above 260 ℃. Microstructure characterization revealed that the transition was caused by the stress-promoted precipitation of β phase in the T4 alloy and rapid phase transformation in the T6 alloy at high temperatures. At 260 ℃, the calculated stress exponent n was 3.1 and 2.8 for the T4 and T6 alloys, respectively, suggesting the creep deformation mechanism was dislocation slip, which was further confirmed by the microstructure after creeping. Our findings can provide new insights into the heat treatment process of Mg-Gd alloys served at high temperatures.展开更多
The inconsistencies regarding the fundamental correlation between Gd content and slip(twinning)activities of Mg alloys appeal further investigations.However,the traditional slip dislocations analysis by TEM is time-co...The inconsistencies regarding the fundamental correlation between Gd content and slip(twinning)activities of Mg alloys appeal further investigations.However,the traditional slip dislocations analysis by TEM is time-consuming,and that by SEM/EBSD cannot recognize the partial slip modes.These urge a more efficient and comprehensive approach to easily distinguish all potential slip modes occurred concurrently in alloy matrix.Here we report a modified lattice rotation analysis that can distinguish all slip systems and provide statistical results for slip activities in Mg alloy matrix.Using this method,the high ductility of Mg-Gd alloy ascribed to the enhanced non-basal slips,cross-slip,and postponed twinning activities by Gd addition is quantitatively clarified.展开更多
Serrated flow has been primarily studied at the macron scale,yet the length and times scales at which the solute-meditated dislocation pinning and de-pinning processes that underlie the phenomenon occur are largely in...Serrated flow has been primarily studied at the macron scale,yet the length and times scales at which the solute-meditated dislocation pinning and de-pinning processes that underlie the phenomenon occur are largely inaccessible by macroscopic tests.Moreover,direct insights into the dominant slip systems in the serrated flow regime,which is particularly critical in Mg alloys given their high plastic anisotropy,requires the use of small-scale testing methods such as microcompression.Thus,in this work,a combination of microcompression and TEM based EDS/STEM measurements have used to critically study the temperature and strain rate dependences in single crystals of pure Mg and a Mg-Gd alloy oriented for twinning,basal-,prismatic-,and pyramidal-slip.The results provide compelling evidence that the solute drag mechanism underlie serrated flow in the alloy;they also show that serrated flow in Mg alloys is markedly anisotropic.This anisotropy is caused by differences between the Burgers vector for slip/twinning,and between the impurity diffusivity along/perpendicular to the basal plane.展开更多
The reactive diffusion in Mg-Gd binary system was studied at 773 K by optical microscopy(OM), scanning electron microscopy(SEM) and electron probe micro-analysis(EPMA). After annealing at 773 K for 12-48 h, four...The reactive diffusion in Mg-Gd binary system was studied at 773 K by optical microscopy(OM), scanning electron microscopy(SEM) and electron probe micro-analysis(EPMA). After annealing at 773 K for 12-48 h, four different intermetallic layers, Mg5 Gd, Mg3 Gd, Mg2 Gd and Mg Gd, form at the Mg/Gd interfaces in the diffusion couples. The thicknesses of intermetallic layers δi(i stands for the phases of Mg5 Gd, Mg3 Gd, Mg2 Gd and Mg Gd, respectively) are proportional to the square root of annealing time t1/2, which indicates that the growth behavior of the intermetallics is controlled by the diffusion rate. The ratio of thickness of each intermetallic layer to the total thickness is constant with increasing the annealing time, which means that the growth behavior is constant at a certain annealing temperature. The diffusion coefficient of Gd in different intermetallics was calculated by Matano method.展开更多
The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that...The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that the as-cast alloy mainly containsα-Mg solid solution and compounds of Mg5RE and Mg24RE5(RE=Gd,Y and Nd)phases.The grain size is refined after hot extrusion,and the Mg5RE and Mg24RE5 compounds are broken during the extrusion process.The extruded alloy exhibits remarkable age hardening response and excellent mechanical properties in the peak-aging state.The ultimate tensile strength,yield strength and elongation are 310 MPa,201 MPa and 5.8%at room temperature,and 173 MPa,133 MPa and 25.0%at 300℃,respectively.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701201)the Natural Science Foundation of China(No.11674045)。
文摘Mg-Gd-Y-Zr alloys with high strength fall within narrow composition range.The present paper explains their composition rule by establishing the cluster-plus-glue-atom unit of Gd-containing Mg solid solution with the aid of Mg matrix and Mg_(5) Gd precipitate phase.First,based on the structural homologue between Gd-containing Mg solid solution and Mg_(5) Gd precipitate phase and in combination with our previously established method for calculating the glue atoms,[Gd-Mg_(12)]Mg_(5) is obtained as the chemical unit of Gd-containing Mg solid solution.Then,seven compositions are designed using different combinations of this unit and that of pure Mg[Mg-Mg_(12)Mg3.After a systematic experimental investigation on the microstructure and mechanical property evolutions as a function of the unit proportions,it is revealed that the Mg-10.1 Gd-3.3 Y-0.9 Zr alloy,being issued from equi-proportion mixing of the two units,shows the strongest tendency of precipitation and reaches the highest strength of 374 MPa after aging.The composition and strength of this alloy are quite close to GW103 K which is well recognized for its general mechanical performance in Mg-Gd-Y-Zr system.
基金financially supported by the Program of Shanghai Subject Chief Engineering (No. 14XD1425000)the National Natural Science Foundation of China (No. 51304135)the Chinese Scholarship Council and DOE (No. DE-FG02-07ER46417)
文摘The effect of cooling rate on the transition of dendrite morphology of a Mg-6Gd (wt%) alloy was semiquantitatively analyzed under a constant temperature gradient by using synchrotron X-ray radiographic technique. Results show that equiaxed dendrites, including exotic 'butterfly-shaped' dendrite morphology, dominate at high cooling rate (〉1 K/s). When the cooling rate decreases in the range of 0.5-1 K/s, the equiaxed-to-columnar transition takes place, and solute segregates at the center of two long dendrite arms (LDA) of the 'butterfly-shaped' dendrite. When the cooling rate is lower than 0.3 K/s, directional solidification occurs and the columnar dendritic growth direction gradually rotates from the crystalline axis to the thermal gradient direction with an increase in cooling rate. Meanwhile, interface moves faster but the dendrite arm spacing decreases. Floating, collision and rotation of dendrites under convection were also studied in this work.2018 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金supported financially by the National Key Research and Development Program of China (No. 2016YFB0701201)the Natural Science Foundation of China (No. 11674045)
文摘Composition homogenization in solid solution is important for industrial alloys. In the present work, a solute homogenization model is proposed based on the chemical short-range-order tendency in Mg-Gd- based alloys. After a calculation using the cluster-plus-glue-atom model, the stable Mg-Gd structural unit is derived, [Gd-Mg12 ]Mg6, where one solute Gd is nearest-neighbored with twelve Mg atoms to form the characteristic hcp cluster [Gd-Mg12 ] and this cluster is matched with six Mg glue atoms. Such a local unit is then mixed with [Mg-Mg12 ]Mg3, the stable unit for pure Mg. Assuming that the Gd-containing units are arranged in fcc- or bcc-like lattice points and the Mg units in their octahedral interstices, three proportions between the two units are obtained, 1:1, 2:3, and 1:3, which constitute three solute homogenization modes. The prevailing Mg-Gd-based alloys are consequently classified into three groups, respectively exemplified by GW103 K (Mg-10Gd-3Y-0.4Zr, wt%), GW83 K (Mg-SGd-3Y-0.4Zr), and GW63 K (Mg-6Gd- 3Y-0.4Zr). Mg-Gd-Y-Zr alloys were designed following the model (where Y and Zr were also added in substitution for Gd) and prepared by permanent-mould casting. According to their mechanical properties, the 1:3 alloy (Mg-5.9Gd-1.6Y-0.4Zr) shows the best comprehensive properties (ultimate tensile strength 305 MPa, yield strength 186 MPa, elongation 9.0%) in solution plus ageing state.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金The financial support from the National Key Research and Development Program of China(Grant no.2016YFB0301101)the Hunan Provincial Science and Technology Program of China(Grant no.2017RS3002)-Huxiang Youth Talent Plan+2 种基金the Youth Talent Project of Innovation-driven Plan at Central South University(Grant no.2019XZ027)the Hebei Provincial Science and Technology Program of China(Grant no.BJ2018026)-Outstanding Young Talents Plan is acknowledgedYing Tang acknowledges the financial support from the Yuanguang fellowship released by Hebei University of Technology.
文摘In this paper,a comprehensive understanding of stable and metastable phase equilibria in binary Mg-Gd system was conducted with an aid of the CALculation of PHAse Diagram(CALPHAD)modeling.Firstly,thermodynamic descriptions of all the stable phases in the Mg-Gd system were re-assessed by considering all the experimental data in the literature.The discrepancy between the phase equilibria and thermochemical properties existing in the previous assessments was eliminated,and the better agreement with the experimental data was achieved in the present assessment.Secondly,the Gibbs energies for metastable β"-Mg3Gd and β"-Mg7Gd were constructed based on the first-principles and CALPHAD computed results as well as their correlation,and then incorporated into the CALPHAD descriptions.The model-predicted solvuses of(Mg)in equilibrium with the metastable β"-Mg7Gd and β'-Mg7Gd compounds showed very good agreement with the limited experimental data.Finally,the presently obtained thermodynamic descriptions of both stable and metastable phases in the binary Mg-Gd system were further validated by realizing the quantitative Scheil-Gulliver solidification simulations of 5 as-cast Mg-Gd alloys,and the successful prediction of the precipitation sequences in Mg-15Gd and Mg-12Gd alloys during the aging process.
基金supported by the Natural Science Foundation of Shanxi Province, China (Nos. 20210302123135, 20210302123163, 201901D211096, 201901D111272)Youth Program of National Natural Science Foundation of China (No. 51901153)+1 种基金Science and Technology Major Project of Shanxi Province, China (Nos. 20191102008, 20191102007, 20191102004)Shanxi Province Scientific Facilities and Instruments Shared Service Platform of Magnesium-based Materials Electric Impulse Aided Forming, China (No. 201805D141005)。
文摘The effect of Nd addition on the microstructure and mechanical properties of as-extruded Mg-9Gd-0.5Zr(wt.%) alloy was investigated. The Mg-9Gd-0.5Zr and Mg-9Gd-2Nd-0.5Zr alloys were extruded at 673 K. The elongated non-dynamic recrystallized(un-DRXed) grains disappear after adding Nd, and uniformly distributed dynamic recrystallized grains with a grain size of 1.68 μm were obtained in the alloy. In addition, numerous nano-Mg5(Gd,Nd)particles were found to precipitate dynamically in the Mg-9Gd-2Nd-0.5Zr alloy, which gave rise to the dynamic recrystallization process via providing nucleation energy through hindering the release of deformation energy and promoting an increase in the strength through the Orowan strengthening mechanism. Moreover, the dynamically recrystallized(DRXed) grains have a weak texture, which plays a significant role in improving the ductility. Therefore,the Nd addition favors the improvement of strength and elongation for the as-extruded Mg-9Gd-0.5Zr alloy,simultaneously.
基金Projects(2006BA104B04-1,2006BAE04B07-3)supported by the National Science and Technology supporting Program of ChinaProject(2007KZ05)supported by the Science and Technology Foundation of Changchun City,China+1 种基金Project supported by"985 Project"of Jilin University,ChinaProject supported by the Open Subject of State Key Laboratory of Rare Earth Resource Utilization(2008)
文摘The effects of semi-solid isothermal process parameters on the microstructure evolution of Mg-Gd rare earth alloy produced by strain-induced melt activation(SIMA)were investigated.The formation mechanism of the particles in the process of the isothermal treatment was also discussed.The results show that the microstructure of the as-cast alloy consists ofα-Mg solid solution, Mg5RE and Mg24RE5(Gd,Y,Nd)phase.After being extruded with an extrusion ratio of 14:1 at 380℃,the microstructure of Mg-Gd alloy changes from developed dendrites to near-equiaxed grains.The liquid volume fraction of the semisolid slurry gradually increases with elevating isothermal temperature or prolonging isothermal time during the partial remelting.To obtain an ideal semisolid slurry,the optimal process parameters for the Mg-Gd alloy should be 630℃for isothermal temperature and 30 min for the corresponding time,respectively,where the volume fraction of the liquid phase is 52%.
基金financial supports from the National Key Research and Development Program of China(2016YFB0101700 and 2016YFB0301104)the National Natural Science Foundation of China(U1764253,U2037601,51971044 and 52001037)+2 种基金the National Defense Basic Scientific Research program of China,the Qinghai Science and Technology Program(2018GX-A1)the Chongqing Science and Technology Commission(cstc2017zdcy-zdzx X0006)Chongqing Scientific&Technological Talents Program(KJXX2017002)。
文摘This research studied the mechanisms of Ca and Zn microalloying on the enhancement of ductility of extruded Mg-Gd sheet by combing electron backscattered diffraction and slip trace analysis.The ductility and microstructure of extruded Mg-0.6Gd and Mg-0.6Gd-0.3Ca-0.2Zn(wt%)sheets were investigated.Basal slip was the main deformation mode under investigation.Ca and Zn microalloying increased the frequency of grain boundaries(GBs)with misorientation angles(θs)<35°,promoted slip transfer across GBs and restricted the basal slip localization.In addition,there were a higher number of GB cracks homogeneously distributed in the Mg-0.6Gd sheet than in the Mg-0.6Gd-0.3Ca-0.2Zn sheet,attributed to the increased cohesion of GBs.The enhancement of basal slip,the suppression of slip localization and the suppression of GB cracking were contributed to the increased ductility for Mg-0.6Gd-0.3Ca-0.2Zn sheet.
基金Project supported by Chinese Academy of Sciences for Distinguished Talents Program(D0104 WLM)
文摘Mg-20Gd( %, mass fraction)samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is mainly composed of supersaturated a-Mg solid solution phase and the as-cast ingot mainly contains a-Mg solid solution and MgsGd phase. The differential scanning calorimeter (DSC) curve of the ribbon exhibits a small exothermic peak in the temperature range from 630 to 680 K, which indicates that the ribbon contains a metastable phase (amorphous). Tensile strength at room temperature of the melt-spun ribbon and as-cast specimen are 308 and 254 MPa, respectively. The elongations of the two samples are less than 2 %. The fracture surfaces demonstrate that the fracture mode of the as-cast Mg-20Gd is a typical cleavage fracture and that of the melt-spun sample is a combination of brittle fracture and ductile fracture.
文摘Mg-Gd alloy particle has exhibited its unique combustion properties as the fuel of Mg/Teflon/Viton(MTV).Mg-Gd alloy/Teflon/Viton(MGTV)could burn at lower ambient pressure than MTV.To further investigate the reaction of MGTV in air,it was investigated via thermo gravity-differential scanning calorimetry(TG-DSC).Meanwhile,the morphologies and element distributions on the alloy surface during the reaction of MGTV in air were investigated via scanning electronic microscope-mapping-electronic differential spectrometer.Meanwhile,a similar experimental protocol on the Mg-Gd alloy particle during oxidation was also applied.The results showed that owning to a protective oxide shell,the onset oxidation temperature of Mg-Gd alloy is higher than Mg.However,the onset oxidation temperature of the exceeded Mg-Gd alloy in MGTV is significantly lower than that of the exceeded Mg in MTV.It was due to the existence of GdOF,which could significantly lower the oxidation temperature of the exceeded fuel.Furthermore,a possible reaction mechanism was proposed.The fascinating oxidation properties of Mg-Gd alloy suggested its promising applications in energetic materials.
基金supported by National Natural Science Foundation of China(Grant Nos.52171121,51971151,52201131,52201132,52171055 and 52071220)Liao Ning Xingliao Program(XLYC1907083)+1 种基金Natural Science Foundation of Liaoning Province of China(2022-NLTS-18-01)the Open Foundation of Key Laboratory of Superlight Materials&Surface Technology of Ministry of Education(HEU10202205).
文摘A bimodal-structured Mg^(-1)5Gd binary alloy with 45%volume fraction of elongated grains and 55%of dynamically recrystallized(DRXed)grains is fabricated by the extrusion process.The precipitating behavior correlating with the evolution of mechanical properties is systematically characterized during the subsequent aging treatment at 200°C.The extruded alloy presents an outstanding strength with tensile yield strength of 466 MPa and ultimate tensile strength of 500 MPa at peak aging condition,while the elongation drops from 9.2%in extrusion state to 3.1%.It is found there obviously exist a rapidly decreasing range of ductility at the early stage of aging.Just during this time,the nano precipitates form preferentially at lamellar dislocation boundaries(LDBs)within the elongated grains,but there is no dense and uniform precipitation in the matrix.The results suggest that the low elongation in the aged Mg^(-1)5Gd alloy is mainly attributed to the nano precipitates prior formed at the LDBs with a high density in the elongated grains.The related mechanism has been clarified.
基金supported by the National Natural Science Foundation of China(Nos.52071035 and U1764253).
文摘Heterostructure metals as a new class of materials can effectively break the traditional strength–ductility trade-off dilemma. In this study, the extruded sheet with the small extrusion ratio(ER) of 3.9(ER3.9)presented a heterogeneous lamella structure(HLS) and texture, where the fine dynamical recrystallized(DRXed) grains formed a random texture and coarse un-DRXed grains exhibited a strong basal texture.The ER3.9 sample presented an excellent combination of strength and ductility. The texture strengthening in coarse grains and hetero-deformation induced(HDI) strengthening contributed to the enhanced strength of the ER3.9 sample besides grain refinement. The improving ductility mainly stems from the weakened texture in fine grains. Interestingly, in coarse grains, the strong basal texture, the occurrence of cross slip, low stacking fault energy(SFE), and dislocation pinned by precipitates weaken the HDI hardening effect. While the traditional dislocation hardening mainly generated by fine grains dominates overall strain hardening. Meanwhile, the activation of non-basal slips, especially pyramidal <c + a> slip,and the generation of cross slips in fine grains benefit for coordinating plastic deformation. The ability for coordinate plastic deformation in fine grains is higher than that of coarse grains, which was confirmed by the digital image correlation technology. This work will promote the development of the heterogeneous theory in textured Mg alloys.
基金supported by the National Natural Science Foundation of China (Grant No. 51771152)the National Key Research and Development Program of China (Grant No. 2018YFB1106800)。
文摘Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will transform to other phases, resulting in severe performance degradation. In this study, we investigated the effect of precipitation state achieved by different heat treatments on high temperature tensile and creep behaviors of the Mg-15Gd alloy by comparing the properties of the as-cast, solid-solutioned(T4) and peak-aged(T6) alloys. The results showed that the tensile mechanical properties of the T6 alloy were always highest from room temperature to 300 ℃, in spite of an abnormal strength increase with temperature existed in the T4 alloy. For tensile creep properties, the T6 alloy exhibited the lowest steady creep rate below 235 ℃ while the T4 alloy possessed the best properties above 260 ℃. Microstructure characterization revealed that the transition was caused by the stress-promoted precipitation of β phase in the T4 alloy and rapid phase transformation in the T6 alloy at high temperatures. At 260 ℃, the calculated stress exponent n was 3.1 and 2.8 for the T4 and T6 alloys, respectively, suggesting the creep deformation mechanism was dislocation slip, which was further confirmed by the microstructure after creeping. Our findings can provide new insights into the heat treatment process of Mg-Gd alloys served at high temperatures.
基金supported by the grant from the Natural Science Foundation of China(51871244)the Hunan Provincial Innovation Foundation for Postgraduate(CX20200172)the Fundamental Research Funds for the Central Universities of Central South University(1053320190103)
文摘The inconsistencies regarding the fundamental correlation between Gd content and slip(twinning)activities of Mg alloys appeal further investigations.However,the traditional slip dislocations analysis by TEM is time-consuming,and that by SEM/EBSD cannot recognize the partial slip modes.These urge a more efficient and comprehensive approach to easily distinguish all potential slip modes occurred concurrently in alloy matrix.Here we report a modified lattice rotation analysis that can distinguish all slip systems and provide statistical results for slip activities in Mg alloy matrix.Using this method,the high ductility of Mg-Gd alloy ascribed to the enhanced non-basal slips,cross-slip,and postponed twinning activities by Gd addition is quantitatively clarified.
文摘Serrated flow has been primarily studied at the macron scale,yet the length and times scales at which the solute-meditated dislocation pinning and de-pinning processes that underlie the phenomenon occur are largely inaccessible by macroscopic tests.Moreover,direct insights into the dominant slip systems in the serrated flow regime,which is particularly critical in Mg alloys given their high plastic anisotropy,requires the use of small-scale testing methods such as microcompression.Thus,in this work,a combination of microcompression and TEM based EDS/STEM measurements have used to critically study the temperature and strain rate dependences in single crystals of pure Mg and a Mg-Gd alloy oriented for twinning,basal-,prismatic-,and pyramidal-slip.The results provide compelling evidence that the solute drag mechanism underlie serrated flow in the alloy;they also show that serrated flow in Mg alloys is markedly anisotropic.This anisotropy is caused by differences between the Burgers vector for slip/twinning,and between the impurity diffusivity along/perpendicular to the basal plane.
基金Projects(2013CB6322022013CB632205)supported by the National Basic Research Program of China
文摘The reactive diffusion in Mg-Gd binary system was studied at 773 K by optical microscopy(OM), scanning electron microscopy(SEM) and electron probe micro-analysis(EPMA). After annealing at 773 K for 12-48 h, four different intermetallic layers, Mg5 Gd, Mg3 Gd, Mg2 Gd and Mg Gd, form at the Mg/Gd interfaces in the diffusion couples. The thicknesses of intermetallic layers δi(i stands for the phases of Mg5 Gd, Mg3 Gd, Mg2 Gd and Mg Gd, respectively) are proportional to the square root of annealing time t1/2, which indicates that the growth behavior of the intermetallics is controlled by the diffusion rate. The ratio of thickness of each intermetallic layer to the total thickness is constant with increasing the annealing time, which means that the growth behavior is constant at a certain annealing temperature. The diffusion coefficient of Gd in different intermetallics was calculated by Matano method.
基金Projects(2006BA104B04-1,2006BAE04B07-3)supported by the National Science and Technology Supporting Program of ChinaProject(2007KZ05)supported by the Science and Technology Supporting Project of Changchun City,China+1 种基金Project supported by the Open Subject of State Key Laboratory of Rare Earth Resource Utilization(2008)the"985 Project"of Jilin University,China
文摘The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that the as-cast alloy mainly containsα-Mg solid solution and compounds of Mg5RE and Mg24RE5(RE=Gd,Y and Nd)phases.The grain size is refined after hot extrusion,and the Mg5RE and Mg24RE5 compounds are broken during the extrusion process.The extruded alloy exhibits remarkable age hardening response and excellent mechanical properties in the peak-aging state.The ultimate tensile strength,yield strength and elongation are 310 MPa,201 MPa and 5.8%at room temperature,and 173 MPa,133 MPa and 25.0%at 300℃,respectively.