The surface properties on both friction and wear resistance can be improved by Ti-ionimplantation.The results show that the significant effect has been obtained by high-dose(】10<sup>17</sup>cm<sup>-...The surface properties on both friction and wear resistance can be improved by Ti-ionimplantation.The results show that the significant effect has been obtained by high-dose(】10<sup>17</sup>cm<sup>-2</sup>)implantation.This condition can just be satisfied by a metal vapor vacuumarc(MEVVA)ion source.It works in pulse mode and delivers an intense pulse ion cur-rent up to 1 A,which leads to an average ion-beam current density of about展开更多
Ti ion implantation was implanted into PVD-TiN films using a metal vapor vacuum arc (MEVVA) ion source with a low implantation dose and at a time-averaged ion beam current density of 25|O.A-cm’2. The wear characteris...Ti ion implantation was implanted into PVD-TiN films using a metal vapor vacuum arc (MEVVA) ion source with a low implantation dose and at a time-averaged ion beam current density of 25|O.A-cm’2. The wear characteristics of the implanted zone was measured and compared to the performance of unimplanted zone by a pin-on-disc apparatus and an optical interference microscope. The structure of the implanted zone and unimplanted zone was observed by X-ray photoelectron spectroscopy (XPS) and high voltage electron microscopy (HVEM). The wear mechanisms of the TiN film after ion implantation were discussed according to the results of XPS and HVEM.展开更多
Using the MEVVA ion source, carbon ions have been implanted in TiN coatings deposited by multi-arc ion plating The Vickers microhardness of the C+ -implanted TiN films increased with the increase in the ion flux and d...Using the MEVVA ion source, carbon ions have been implanted in TiN coatings deposited by multi-arc ion plating The Vickers microhardness of the C+ -implanted TiN films increased with the increase in the ion flux and dose. X-ray diffraction (XRD) analysis showed that the TiC phases had been formed in the films. In addition, the films had the preferred growth orientations of TiN and TiC, both of which were (111) orientation after annealing at 500℃ for 30 min. Auger electron spectra analysis indicated that C+ -implanted profile was in typical Gaussian-like distribution in single films. The distribution with multipeaks of C atoms was obtained in multi-layer TiN/Ti. The possibility of the multilayer films (Ti (C, N)/TiN/Ti(C, N)/TiN and Ti(C, N)/TiC/Ti(C, N)/TiC) forming using the C-implanted TiN/Ti films is presented for the first time.展开更多
Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic ...Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic silicides has been investigated with the analysis of channeled low angle emergence and TEM.Three layers could be observed in the implanted region as the implanting ion flux is selected as 25μA/cm\+2.The thickness of the silicide layer is about 60—80nm.The defect density N \-d and sheet resistance R \-s decrease with the increase of the ion flux.After RTA annealing of the implanted sample,the N\-d and R\-s decreased obviously.R\-s decreased from 54Ω/□ to 14Ω/□.The minimum of resistivity is 84μΩ·cm.It is evident that electrical properties of the Y silicides can be improved by RTA.The formation of the silicides with YSi and YSi\-2 are confirmed by X\|ray diffraction (XRD) analysis.With the analysis of low angle emergence,important information exposed from the depth profiles of atoms and lattice distortion in an implanted region would be used to study the synthesis of silicides.展开更多
基金supported by the Opening Laboratory of the Radiation BeamMaterial Engineering of Bejing Normal University.
文摘The surface properties on both friction and wear resistance can be improved by Ti-ionimplantation.The results show that the significant effect has been obtained by high-dose(】10<sup>17</sup>cm<sup>-2</sup>)implantation.This condition can just be satisfied by a metal vapor vacuumarc(MEVVA)ion source.It works in pulse mode and delivers an intense pulse ion cur-rent up to 1 A,which leads to an average ion-beam current density of about
基金supported partly by Science and Technology Engineering of Nantong(2004032)Nantong Institute of Technology(200347)
文摘Ti ion implantation was implanted into PVD-TiN films using a metal vapor vacuum arc (MEVVA) ion source with a low implantation dose and at a time-averaged ion beam current density of 25|O.A-cm’2. The wear characteristics of the implanted zone was measured and compared to the performance of unimplanted zone by a pin-on-disc apparatus and an optical interference microscope. The structure of the implanted zone and unimplanted zone was observed by X-ray photoelectron spectroscopy (XPS) and high voltage electron microscopy (HVEM). The wear mechanisms of the TiN film after ion implantation were discussed according to the results of XPS and HVEM.
基金Project supported by the National Natural Science Foundation of China and the "863" Hi-Tech Program of China.
文摘Using the MEVVA ion source, carbon ions have been implanted in TiN coatings deposited by multi-arc ion plating The Vickers microhardness of the C+ -implanted TiN films increased with the increase in the ion flux and dose. X-ray diffraction (XRD) analysis showed that the TiC phases had been formed in the films. In addition, the films had the preferred growth orientations of TiN and TiC, both of which were (111) orientation after annealing at 500℃ for 30 min. Auger electron spectra analysis indicated that C+ -implanted profile was in typical Gaussian-like distribution in single films. The distribution with multipeaks of C atoms was obtained in multi-layer TiN/Ti. The possibility of the multilayer films (Ti (C, N)/TiN/Ti(C, N)/TiN and Ti(C, N)/TiC/Ti(C, N)/TiC) forming using the C-implanted TiN/Ti films is presented for the first time.
基金Project Supported by National Natural Science Foundation of China ( Grant No.59671 0 51 ) and by National HighTechnology Resea
文摘Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic silicides has been investigated with the analysis of channeled low angle emergence and TEM.Three layers could be observed in the implanted region as the implanting ion flux is selected as 25μA/cm\+2.The thickness of the silicide layer is about 60—80nm.The defect density N \-d and sheet resistance R \-s decrease with the increase of the ion flux.After RTA annealing of the implanted sample,the N\-d and R\-s decreased obviously.R\-s decreased from 54Ω/□ to 14Ω/□.The minimum of resistivity is 84μΩ·cm.It is evident that electrical properties of the Y silicides can be improved by RTA.The formation of the silicides with YSi and YSi\-2 are confirmed by X\|ray diffraction (XRD) analysis.With the analysis of low angle emergence,important information exposed from the depth profiles of atoms and lattice distortion in an implanted region would be used to study the synthesis of silicides.