Effect of activated carbon and electrolyte on electrochemical properties of organic supercapacitor was investigated. The results show that specific surface area and mesoporosity of activated carbon influence specific ...Effect of activated carbon and electrolyte on electrochemical properties of organic supercapacitor was investigated. The results show that specific surface area and mesoporosity of activated carbon influence specific capacitance. If specific surface area is larger and mesoporosity is higher, the specific capacitance will become bigger. Specific surface area influences resistance of carbon electrode and consequently influences power property and pore size distribution. If specific surface area is smaller and mesoporosity is higher, the power property will become better. Ash influences leakage current and electrochemical cycling stability. If ash content is lower, the performance will become better. The properties of supercapacitor highly depend on the electrolyte. The compatibility of electrolyte and activated carbon is a determining factor of supercapacitor’s working voltage. LiPF6/(EC+EMC+DMC) is inappropriate for double layer capacitor. MeEt3NPF4/PC has higher specific capacitance than Et4NPF4/PC because methyl’s electronegativity value is lower than ethyl and MeEt3N+ has more positive charges and stronger polarizability than Et4N+ when an ethyl is substituted by methyl.展开更多
Mesoporous carbons have been widely utilized as the sulfur host for lithium-sulfur (Li-S) batteries. The ability to engineer the porosity, wall thickness, and graphitization degree of the carbon host is essential fo...Mesoporous carbons have been widely utilized as the sulfur host for lithium-sulfur (Li-S) batteries. The ability to engineer the porosity, wall thickness, and graphitization degree of the carbon host is essential for addressing issues that hamper commercialization of Li-S batteries, such as fast capacity decay and poor high-rate performance. In this work, highly ordered, ultrathin mesoporous graphitic-carbon frameworks (MGFs) having unique cage-like mesoporosity, derived from self-assembled Fe304 nanoparticle superlattices, are demonstrated to be an excellent host for encapsulating sulfur. The resulting S@MGFs exhibit high specific capacity (1,446 mAh.g-1 at 0.15 C), good rate capability (430 mAh.g-1 at 6 C), and exceptional cycling stability (-0.049% capacity decay per cycle at 1 C) when used as Li-S cathodes. The superior electrochemical performance of the S@MGFs is attributed to the many unique and advantageous structural features of MGFs. In addition to the interconnected, ultrathin graphitic-carbon framework that ensures rapid electron and lithium-ion transport, the microporous openings between adjacent mesopores efficiently suppress the diffusion of polysulfides, leading to improved capacity retention even at high current densities.展开更多
Silicoaluminophosphates (SAPOs) with different pore structures were synthesized through the implementation of polyethylene glycol (PEG) as a mesopores impregnation agent. Using PEGs with different molecular weigh...Silicoaluminophosphates (SAPOs) with different pore structures were synthesized through the implementation of polyethylene glycol (PEG) as a mesopores impregnation agent. Using PEGs with different molecular weights (MWs) and concentrations in the synthesis precursor, several samples were synthesized and characterized. Applying a PEG capping agent to the precursors led to the formation of tuned mesopores within the microporous matrix of the SAPO. The effects of the PEG molecular weight and PEG/Al molar ratio were investigated to maximize the efficiency of the catalyst in the methanol-to-olefin (MTO) process. Using PEG with a MW of 6000 resulted in the formation of both Zeolite Rho and chabazite structural frameworks (i.e., DNL-6 and SAPO-34). Pure SAPO-34 samples were successfully prepared using PEG with a MW of 4000. Our results showed that the PEG concentrations affect the porosity and acidity of the synthesized materials. Furthermore, the SAPO-34 sample synthesized with PEG (MW of 4000) and a PEG/Al molar ratio of 0.0125 showed a superior catalytic stability in the MTO reaction owing to the tuned bi-modal porosity and tailored acidity pattern. Finally, through reactivation experiments, it was found that the catalyst is stable even after several regeneration cycles.展开更多
Ultrafine mesoporous tungsten carbide (WC) was prepared from as-synthesized mesoporous WC using high-energy ball milling treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsor...Ultrafine mesoporous tungsten carbide (WC) was prepared from as-synthesized mesoporous WC using high-energy ball milling treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption-desorption techniques were used to characterize the samples. Brunauer-Emmett-Teller (BET) surface areas of WC samples increased with the increasing ball milling time and kept constant at 10-11 mZog 1 for over 9 h. The electrocatalytic properties of methanol electro-oxidation at WC powder microelectrodes were investigated by cyclic voltammetry, chronoamperometry, and quasi-steady-state polarization techniques. The results reveal that ball-milled WC exhibits higher activity for methanol electro-oxidation than as-synthesized mesoporous WC. The suitability of ball-milled WC for methanol electro-oxidation is better than platinum (Pt) micro-disk, although the current peak is not as high as the Pt micro-disk. Moreover, increasing the methanol concentration and reaction temperature promotes methanol electro-oxidation on ultrafine mesoporous WC.展开更多
Hierarchical phases of the biomaterials can be used as template to transfer their intricate organization into biomimic inorganic solids. Herein, hierarchical mesoporous silica films with aligned pores have been templa...Hierarchical phases of the biomaterials can be used as template to transfer their intricate organization into biomimic inorganic solids. Herein, hierarchical mesoporous silica films with aligned pores have been templated by nanofibrillar alginic acid. An aqueous suspension of the alginic acid nanofibers was prepared by treating the brown seaweeds with sodium carbonate solution and subsequent precipitation in dilute hydrochloric acid. The alginic acid nanofibers of the organize into a hierarchical aligned phase in an acetic acid-sodium acetate buffer that was used to template silica-alginic acid composite films by evaporation induced self-assembly of alkoxysilane with nanofibrillar alginic acid. Calcination of the alginic acid template afforded hierarchical mesoporous silica glasses. Carbonization of the silica-alginic acid composites and subsequent etching the silica recovered mesoporous carbon supercapacitors.展开更多
Six carbon powders with varied surface areas and porosities were used to store and release acetaminophen (ACT). A 10 mg/mL solution of acetaminophen in phosphate buffer solution (pH = 7.0) at 25℃ with exposure to car...Six carbon powders with varied surface areas and porosities were used to store and release acetaminophen (ACT). A 10 mg/mL solution of acetaminophen in phosphate buffer solution (pH = 7.0) at 25℃ with exposure to carbon powder for 72 hours was used to drive the maximum loading of acetaminophen into the powders. Carboxen 1012 (BET surface area of1500 m2/g) powder exhibited the greatest maximum adsorption of ACT (up to 62% by mass). The maximum ACT adsorption was correlated with surface area and porosity. The most effective carbon powders for binding ACT were ones containing high mesopore volumes. Loaded carbon powder was separated from the ACT solution and then phosphate buffer solution (pH = 7.0) was combined with the loaded carbon powder and ACT absorbance readings at 243 nm were taken over time. The various carbon powders were able to release a portion of the ACT that they originally adsorbed. The Carboxen 1012 powder displayed the greatest ACT release with a rapid initial release followed by a steady but slightly declining release over a time period of 2 to 11 weeks. The results were supportive of mesoporous carbons such as Carboxen 1012 being suitable for drug loading and release.展开更多
Developing carbon-based supercapacitors with high rate capability is of great importance to meet the emerging demands for devices that requires high energy density as well as high power density.However,it is hard to f...Developing carbon-based supercapacitors with high rate capability is of great importance to meet the emerging demands for devices that requires high energy density as well as high power density.However,it is hard to fabricate a nanocarbon with high electro-active surface area meanwhile maintaining superior conductivity to ensure the high rate capability since excellent conductivity is usually realized by high temperature graphitization,which would lead to the structural collapse and sintering resulting in low surface area.Herein,we reported a highly porous graphitic carbon nanosheet with an unprecedented rate capability of 98%of its initial capacitance from 0.5 to 50 A/g for ultrahigh-rate supercapacitive energy storage.These hierarchical mesoporous carbon nanosheets(HMCN)were fabricated by a template induced catalytic graphitization approach,in which sheet-like Mg(OH)_(2) was employed as catalytic template in situ catalytically polymerizing of catechol and formaldehyde and catalytically graphitizing of the formed carbon skeleton.Upon the co-effect of template(avoiding the sintering)and the deoxygenation(creating the pores)during the high temperature graphitization process,the obtained HMCN material possesses nanosheet morphology with highly porous graphitic microstructure rich in mesoporosity,large in surface area(2316 m^(2)/g),large in pore volume(3.58 cm^(3)/g)and excellent in conductivity(109.8 S/cm).In 1.0 M TEABF_(4)/AN,HMCN exhibits superior supercapacitive performance including large energy density of 52.2 Wh/kg at high power density of 118 k W/kg,long-cycling stability and excellent rate capability,making HMCN a promising electrode material for supercapacitor devices.展开更多
基金Project(2007CB613607) supported by the National Basic Research Program of China
文摘Effect of activated carbon and electrolyte on electrochemical properties of organic supercapacitor was investigated. The results show that specific surface area and mesoporosity of activated carbon influence specific capacitance. If specific surface area is larger and mesoporosity is higher, the specific capacitance will become bigger. Specific surface area influences resistance of carbon electrode and consequently influences power property and pore size distribution. If specific surface area is smaller and mesoporosity is higher, the power property will become better. Ash influences leakage current and electrochemical cycling stability. If ash content is lower, the performance will become better. The properties of supercapacitor highly depend on the electrolyte. The compatibility of electrolyte and activated carbon is a determining factor of supercapacitor’s working voltage. LiPF6/(EC+EMC+DMC) is inappropriate for double layer capacitor. MeEt3NPF4/PC has higher specific capacitance than Et4NPF4/PC because methyl’s electronegativity value is lower than ethyl and MeEt3N+ has more positive charges and stronger polarizability than Et4N+ when an ethyl is substituted by methyl.
基金A. G. D. acknowledges the financial support from the National Basic Research Program of China (No. 2014CB845602), Natural National Science Foundation of China (No. 21373052), and Shanghai International Science and Technology Cooperation Project (No. 15520720100). D. Y. is grateful for financial support from Natural National Science Foundation of China (Nos. 51373035, 51373040, 51573030, and 51573028), and International Science and Technology Cooperation Program of China (No. 2014DFE40130).
文摘Mesoporous carbons have been widely utilized as the sulfur host for lithium-sulfur (Li-S) batteries. The ability to engineer the porosity, wall thickness, and graphitization degree of the carbon host is essential for addressing issues that hamper commercialization of Li-S batteries, such as fast capacity decay and poor high-rate performance. In this work, highly ordered, ultrathin mesoporous graphitic-carbon frameworks (MGFs) having unique cage-like mesoporosity, derived from self-assembled Fe304 nanoparticle superlattices, are demonstrated to be an excellent host for encapsulating sulfur. The resulting S@MGFs exhibit high specific capacity (1,446 mAh.g-1 at 0.15 C), good rate capability (430 mAh.g-1 at 6 C), and exceptional cycling stability (-0.049% capacity decay per cycle at 1 C) when used as Li-S cathodes. The superior electrochemical performance of the S@MGFs is attributed to the many unique and advantageous structural features of MGFs. In addition to the interconnected, ultrathin graphitic-carbon framework that ensures rapid electron and lithium-ion transport, the microporous openings between adjacent mesopores efficiently suppress the diffusion of polysulfides, leading to improved capacity retention even at high current densities.
文摘Silicoaluminophosphates (SAPOs) with different pore structures were synthesized through the implementation of polyethylene glycol (PEG) as a mesopores impregnation agent. Using PEGs with different molecular weights (MWs) and concentrations in the synthesis precursor, several samples were synthesized and characterized. Applying a PEG capping agent to the precursors led to the formation of tuned mesopores within the microporous matrix of the SAPO. The effects of the PEG molecular weight and PEG/Al molar ratio were investigated to maximize the efficiency of the catalyst in the methanol-to-olefin (MTO) process. Using PEG with a MW of 6000 resulted in the formation of both Zeolite Rho and chabazite structural frameworks (i.e., DNL-6 and SAPO-34). Pure SAPO-34 samples were successfully prepared using PEG with a MW of 4000. Our results showed that the PEG concentrations affect the porosity and acidity of the synthesized materials. Furthermore, the SAPO-34 sample synthesized with PEG (MW of 4000) and a PEG/Al molar ratio of 0.0125 showed a superior catalytic stability in the MTO reaction owing to the tuned bi-modal porosity and tailored acidity pattern. Finally, through reactivation experiments, it was found that the catalyst is stable even after several regeneration cycles.
基金Project supported by Science and Technology Major Project in International Cooperation of Zhejiang Province (No. 2008C14040), Key Project of Natural Science Foundation of Zhejiang Province (No. Z4100790) and International Science & Technology Cooperation Program of China (No. 2010DFB63680).
文摘Ultrafine mesoporous tungsten carbide (WC) was prepared from as-synthesized mesoporous WC using high-energy ball milling treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption-desorption techniques were used to characterize the samples. Brunauer-Emmett-Teller (BET) surface areas of WC samples increased with the increasing ball milling time and kept constant at 10-11 mZog 1 for over 9 h. The electrocatalytic properties of methanol electro-oxidation at WC powder microelectrodes were investigated by cyclic voltammetry, chronoamperometry, and quasi-steady-state polarization techniques. The results reveal that ball-milled WC exhibits higher activity for methanol electro-oxidation than as-synthesized mesoporous WC. The suitability of ball-milled WC for methanol electro-oxidation is better than platinum (Pt) micro-disk, although the current peak is not as high as the Pt micro-disk. Moreover, increasing the methanol concentration and reaction temperature promotes methanol electro-oxidation on ultrafine mesoporous WC.
文摘Hierarchical phases of the biomaterials can be used as template to transfer their intricate organization into biomimic inorganic solids. Herein, hierarchical mesoporous silica films with aligned pores have been templated by nanofibrillar alginic acid. An aqueous suspension of the alginic acid nanofibers was prepared by treating the brown seaweeds with sodium carbonate solution and subsequent precipitation in dilute hydrochloric acid. The alginic acid nanofibers of the organize into a hierarchical aligned phase in an acetic acid-sodium acetate buffer that was used to template silica-alginic acid composite films by evaporation induced self-assembly of alkoxysilane with nanofibrillar alginic acid. Calcination of the alginic acid template afforded hierarchical mesoporous silica glasses. Carbonization of the silica-alginic acid composites and subsequent etching the silica recovered mesoporous carbon supercapacitors.
文摘Six carbon powders with varied surface areas and porosities were used to store and release acetaminophen (ACT). A 10 mg/mL solution of acetaminophen in phosphate buffer solution (pH = 7.0) at 25℃ with exposure to carbon powder for 72 hours was used to drive the maximum loading of acetaminophen into the powders. Carboxen 1012 (BET surface area of1500 m2/g) powder exhibited the greatest maximum adsorption of ACT (up to 62% by mass). The maximum ACT adsorption was correlated with surface area and porosity. The most effective carbon powders for binding ACT were ones containing high mesopore volumes. Loaded carbon powder was separated from the ACT solution and then phosphate buffer solution (pH = 7.0) was combined with the loaded carbon powder and ACT absorbance readings at 243 nm were taken over time. The various carbon powders were able to release a portion of the ACT that they originally adsorbed. The Carboxen 1012 powder displayed the greatest ACT release with a rapid initial release followed by a steady but slightly declining release over a time period of 2 to 11 weeks. The results were supportive of mesoporous carbons such as Carboxen 1012 being suitable for drug loading and release.
基金financially supported by the National Science Foundation of China(22172073 and 21773112)the Fundamental Research Funds for the Central Universitiesthe Science and Technology Innovation Team Plan for the youths in universities of Hubei province(T2020021)。
文摘Developing carbon-based supercapacitors with high rate capability is of great importance to meet the emerging demands for devices that requires high energy density as well as high power density.However,it is hard to fabricate a nanocarbon with high electro-active surface area meanwhile maintaining superior conductivity to ensure the high rate capability since excellent conductivity is usually realized by high temperature graphitization,which would lead to the structural collapse and sintering resulting in low surface area.Herein,we reported a highly porous graphitic carbon nanosheet with an unprecedented rate capability of 98%of its initial capacitance from 0.5 to 50 A/g for ultrahigh-rate supercapacitive energy storage.These hierarchical mesoporous carbon nanosheets(HMCN)were fabricated by a template induced catalytic graphitization approach,in which sheet-like Mg(OH)_(2) was employed as catalytic template in situ catalytically polymerizing of catechol and formaldehyde and catalytically graphitizing of the formed carbon skeleton.Upon the co-effect of template(avoiding the sintering)and the deoxygenation(creating the pores)during the high temperature graphitization process,the obtained HMCN material possesses nanosheet morphology with highly porous graphitic microstructure rich in mesoporosity,large in surface area(2316 m^(2)/g),large in pore volume(3.58 cm^(3)/g)and excellent in conductivity(109.8 S/cm).In 1.0 M TEABF_(4)/AN,HMCN exhibits superior supercapacitive performance including large energy density of 52.2 Wh/kg at high power density of 118 k W/kg,long-cycling stability and excellent rate capability,making HMCN a promising electrode material for supercapacitor devices.