The increases in power network and weak tie-line have led power system oscillation problems. To improve the oscillatory stability, installing the power system stabilizer (PSS) with optimal allocation is considered due...The increases in power network and weak tie-line have led power system oscillation problems. To improve the oscillatory stability, installing the power system stabilizer (PSS) with optimal allocation is considered due to excessive cost. This paper recommends the suitable PSS locations by using eigenvalue analysis and participation factor to enhance the system oscillation damping. The effects of installed PSSs in damping local and inter-area modes of oscillations are confirmed through time domain simulation results. The effectiveness of proposed approach is tested and validated on MEPE test system. Robustness of stabilizers against dynamic response of generator speed deviation, rotor angle deviation, and response of mechanical power are observed to access the performances of PSSs.展开更多
文摘The increases in power network and weak tie-line have led power system oscillation problems. To improve the oscillatory stability, installing the power system stabilizer (PSS) with optimal allocation is considered due to excessive cost. This paper recommends the suitable PSS locations by using eigenvalue analysis and participation factor to enhance the system oscillation damping. The effects of installed PSSs in damping local and inter-area modes of oscillations are confirmed through time domain simulation results. The effectiveness of proposed approach is tested and validated on MEPE test system. Robustness of stabilizers against dynamic response of generator speed deviation, rotor angle deviation, and response of mechanical power are observed to access the performances of PSSs.