1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an important enzyme involved in the 2-C-methyi-D- erythritol-4-phosphate (MEP) pathway which provides the basic five-carbon units for isoprenoid biosynthesi...1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an important enzyme involved in the 2-C-methyi-D- erythritol-4-phosphate (MEP) pathway which provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the role of the MEP pathway in plant development and metabolism, we carried out detailed analyses on a dxr mutant (GK_215C01) and two DXR transgenic co-suppression fines, OX-DXR-L2 and OX-DXR-L7. We found that the dxr mutant was albino and dwarf. It never bolted, had significantly reduced number of trichomes and most of the stomata could not close normally in the leaves. The two co-suppression lines produced more yellow inflorescences and albino sepals with no trichomes. The transcription levels of genes involved in tricbome initiation were found to be strongly affected, including GLABRA1, TRANSPARENT TESTA GLABROUS 1, TRIPTYCHON and SPINDLY, expression of which is regulated by gibberellic acids (GAs). Exogenous application of GA3 could partially rescue the dwarf phenotype and the trichome initiation of dxr, whereas exogenous application of abscisic acid (ABA) could rescue the stomata closure defect, suggesting that lower levels of both GA and ABA contribute to the phenotype in the dxr mutants. We further found that genes involved in the biosynthetic pathways of GA and ABA were coordinately regulated. These results indicate that disruption of the plastidial MEP pathway leads to biosynthetic deficiency of photosynthetic pigments, GAs and ABA, and thus the developmental abnormalities, and that the flux from the cytoplasmic mevalonate pathway is not sufficient to rescue the deficiency caused by the blockage of the plastidial MEP pathway. These results reveal a critical role for the MEP biosynthetic pathway in controlling the biosynthesis of isoprenoids.展开更多
Plant isoprenoids are formed from precursors synthesized by the mevalonate (MVA) pathway in the cytosol or by the methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. Although some exchange of precursors occ...Plant isoprenoids are formed from precursors synthesized by the mevalonate (MVA) pathway in the cytosol or by the methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. Although some exchange of precursors occurs, cytosolic sesquiterpenes are assumed to derive mainly from MVA, while plastidial monoterpenes are produced preferentially from MEP precursors. Additional complexity arises in the first step of the MEP pathway, which is typically catalyzed by two divergent 1-deoxy-D-xylulose 5-phosphate synthase isoforms (DXS1, DXS2). In tomato (Solanum lycopersicum), the SIDXS1 gene is ubiquitously expressed with highest levels during fruit ripening, whereas SIDXS2 transcripts are abundant in only few tissues, including young leaves, petals, and isolated trichomes. Specific down-regulation of SIDXS2 expression was performed by RNA interference in transgenic plants to investigate feedback mechanisms. SIDXS2 down-regulation led to a decrease in the monoterpene β-phellandrene and an increase in two sesquiterpenes in trichomes. Moreover, incorporation of MVA-derived precursors into residual monoterpenes and into sesquiterpenes was elevated as determined by comparison of ^13C to ^12C natural isotope ratios. A compensatory up-regulation of SIDXS1 was not observed. Down-regulated lines also exhibited increased trichome density and showed less damage by leaf-feeding Spodoptera littoralis caterpillars. The results reveal novel, non-redundant roles of DXS2 in modulating isoprenoid metabolism and a pronounced plasticity in isoprenoid precursor allocation.展开更多
Isoprenoids are among the largest and most chemically diverse classes of organic compounds in nature and are involved in the processes of photosynthesis, respiration, growth, development,and plant responses to stress....Isoprenoids are among the largest and most chemically diverse classes of organic compounds in nature and are involved in the processes of photosynthesis, respiration, growth, development,and plant responses to stress. The basic building block units for isoprenoid synthesis-isopentenyl diphosphate and its isomer dimethylallyl diphosphate-are generated by the mevalonate (MVA) and methylerythritol phosphate(MEP) pathways. Here, we summarize recent advances on the roles of the MEP and MVA pathways in plant growth, development and stress responses, and attempt to define the underlying gene networks that orchestrate the MEP and MVA pathways in response to developmental or environmental cues.Through phylogenomic analysis, we also provide a new perspective on the evolution of the plant isoprenoid pathway. We conclude that the presence of the MVA pathway in plants may be associated with the transition from aquatic to subaerial and terrestrial environments, as lineages for its core components are absent in green algae. The emergence of the MVA pathway has acted as a key evolutionary event in plants that facilitated land colonization and subsequent embryo development, as well as adaptation to new and varied environments.展开更多
基金Acknowledgments This work was supported by the National Natural Science Foundation of China (NSFC Grant 90717003 to L-J Qu).
文摘1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an important enzyme involved in the 2-C-methyi-D- erythritol-4-phosphate (MEP) pathway which provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the role of the MEP pathway in plant development and metabolism, we carried out detailed analyses on a dxr mutant (GK_215C01) and two DXR transgenic co-suppression fines, OX-DXR-L2 and OX-DXR-L7. We found that the dxr mutant was albino and dwarf. It never bolted, had significantly reduced number of trichomes and most of the stomata could not close normally in the leaves. The two co-suppression lines produced more yellow inflorescences and albino sepals with no trichomes. The transcription levels of genes involved in tricbome initiation were found to be strongly affected, including GLABRA1, TRANSPARENT TESTA GLABROUS 1, TRIPTYCHON and SPINDLY, expression of which is regulated by gibberellic acids (GAs). Exogenous application of GA3 could partially rescue the dwarf phenotype and the trichome initiation of dxr, whereas exogenous application of abscisic acid (ABA) could rescue the stomata closure defect, suggesting that lower levels of both GA and ABA contribute to the phenotype in the dxr mutants. We further found that genes involved in the biosynthetic pathways of GA and ABA were coordinately regulated. These results indicate that disruption of the plastidial MEP pathway leads to biosynthetic deficiency of photosynthetic pigments, GAs and ABA, and thus the developmental abnormalities, and that the flux from the cytoplasmic mevalonate pathway is not sufficient to rescue the deficiency caused by the blockage of the plastidial MEP pathway. These results reveal a critical role for the MEP biosynthetic pathway in controlling the biosynthesis of isoprenoids.
文摘Plant isoprenoids are formed from precursors synthesized by the mevalonate (MVA) pathway in the cytosol or by the methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. Although some exchange of precursors occurs, cytosolic sesquiterpenes are assumed to derive mainly from MVA, while plastidial monoterpenes are produced preferentially from MEP precursors. Additional complexity arises in the first step of the MEP pathway, which is typically catalyzed by two divergent 1-deoxy-D-xylulose 5-phosphate synthase isoforms (DXS1, DXS2). In tomato (Solanum lycopersicum), the SIDXS1 gene is ubiquitously expressed with highest levels during fruit ripening, whereas SIDXS2 transcripts are abundant in only few tissues, including young leaves, petals, and isolated trichomes. Specific down-regulation of SIDXS2 expression was performed by RNA interference in transgenic plants to investigate feedback mechanisms. SIDXS2 down-regulation led to a decrease in the monoterpene β-phellandrene and an increase in two sesquiterpenes in trichomes. Moreover, incorporation of MVA-derived precursors into residual monoterpenes and into sesquiterpenes was elevated as determined by comparison of ^13C to ^12C natural isotope ratios. A compensatory up-regulation of SIDXS1 was not observed. Down-regulated lines also exhibited increased trichome density and showed less damage by leaf-feeding Spodoptera littoralis caterpillars. The results reveal novel, non-redundant roles of DXS2 in modulating isoprenoid metabolism and a pronounced plasticity in isoprenoid precursor allocation.
基金supported by National Natural Science Foundation of China (31971410)the Postdoctoral Fund of Yunnan Province (Y835981261 and Y732681261)Postdoctoral Science Foundation of China (X.P., 2018M633434)
文摘Isoprenoids are among the largest and most chemically diverse classes of organic compounds in nature and are involved in the processes of photosynthesis, respiration, growth, development,and plant responses to stress. The basic building block units for isoprenoid synthesis-isopentenyl diphosphate and its isomer dimethylallyl diphosphate-are generated by the mevalonate (MVA) and methylerythritol phosphate(MEP) pathways. Here, we summarize recent advances on the roles of the MEP and MVA pathways in plant growth, development and stress responses, and attempt to define the underlying gene networks that orchestrate the MEP and MVA pathways in response to developmental or environmental cues.Through phylogenomic analysis, we also provide a new perspective on the evolution of the plant isoprenoid pathway. We conclude that the presence of the MVA pathway in plants may be associated with the transition from aquatic to subaerial and terrestrial environments, as lineages for its core components are absent in green algae. The emergence of the MVA pathway has acted as a key evolutionary event in plants that facilitated land colonization and subsequent embryo development, as well as adaptation to new and varied environments.