The Mei symmetry and the Lie symmetry of a rotational relativistic variable mass system are studied. The definitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass ...The Mei symmetry and the Lie symmetry of a rotational relativistic variable mass system are studied. The definitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system are given. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.展开更多
The definition and criterion of the Mei symmetry of a relativistic variable mass system are given. The relation between the Mei symmetry and the Noether symmetry of the system is found under infinitesimal transformati...The definition and criterion of the Mei symmetry of a relativistic variable mass system are given. The relation between the Mei symmetry and the Noether symmetry of the system is found under infinitesimal transformations of groups. The conserved quantities to which the Mei symmetry and Noether symmetry of the system lead are obtained.An example is given to illustrate the application of the result.展开更多
Based on the concept of adiabatic invariant, the perturbation and adiabatic invariants of the Mei symmetry for nonholonomic mechanical systems are studied. The exact invariants of the Mei symmetry for the system witho...Based on the concept of adiabatic invariant, the perturbation and adiabatic invariants of the Mei symmetry for nonholonomic mechanical systems are studied. The exact invariants of the Mei symmetry for the system without perturbation are given. The perturbation to the Mei symmetry is discussed and the adiabatic invariants of the Mei symmetry for the perturbed system are obtained.展开更多
Two new types of conserved quantities directly deduced by Mei symmetry of holonomic mechanical system are studied. The definition and criterion of Mei symmetry for holonomic system are given. A coordination function i...Two new types of conserved quantities directly deduced by Mei symmetry of holonomic mechanical system are studied. The definition and criterion of Mei symmetry for holonomic system are given. A coordination function is introduced, the conditions under which the Mei symmetry can directly lead to the two types of conserved quantities and the forms of the two types of conserved quantities are obtained. An illustrative example is given. The result indicates that the coordination function can be selected properly according to the demand of the gauge function, thereby the gauge function can be found out more easily. Furthermore, since the choice of the coordination function has multiformity, much T more conserved quantity of Mei symmetry for holonomic mechanical system can be obtained.展开更多
Based on the concept of adiabatic invariant, the perturbation to Mei symmetry and Noether adiabatic invariants for Birkhoffian systems are studied. The exact invariants of Mei symmetry for the system without perturbat...Based on the concept of adiabatic invariant, the perturbation to Mei symmetry and Noether adiabatic invariants for Birkhoffian systems are studied. The exact invariants of Mei symmetry for the system without perturbation are given. The perturbation to Mei symmetry is discussed and the Noether adiabatic invariants induced from the perturbation to Mei symmetry of the system are obtained.展开更多
In this paper, a new type of conserved quantity indirectly deduced from the Mei symmetry for relativistic mechanical system in phase space is studied. The definition and the criterion of the Mei symmetry for the syste...In this paper, a new type of conserved quantity indirectly deduced from the Mei symmetry for relativistic mechanical system in phase space is studied. The definition and the criterion of the Mei symmetry for the system are given. The condition for existence and the form of the new conserved quantity are obtained. Finally, an example is given to illustrate the application of the results.展开更多
The Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are studied. The definition and criterion of the Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are given. The rel...The Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are studied. The definition and criterion of the Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are given. The relationship between them is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained.An example is given to illustrate the application of the result.展开更多
文摘The Mei symmetry and the Lie symmetry of a rotational relativistic variable mass system are studied. The definitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system are given. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.
文摘The definition and criterion of the Mei symmetry of a relativistic variable mass system are given. The relation between the Mei symmetry and the Noether symmetry of the system is found under infinitesimal transformations of groups. The conserved quantities to which the Mei symmetry and Noether symmetry of the system lead are obtained.An example is given to illustrate the application of the result.
文摘Based on the concept of adiabatic invariant, the perturbation and adiabatic invariants of the Mei symmetry for nonholonomic mechanical systems are studied. The exact invariants of the Mei symmetry for the system without perturbation are given. The perturbation to the Mei symmetry is discussed and the adiabatic invariants of the Mei symmetry for the perturbed system are obtained.
文摘Two new types of conserved quantities directly deduced by Mei symmetry of holonomic mechanical system are studied. The definition and criterion of Mei symmetry for holonomic system are given. A coordination function is introduced, the conditions under which the Mei symmetry can directly lead to the two types of conserved quantities and the forms of the two types of conserved quantities are obtained. An illustrative example is given. The result indicates that the coordination function can be selected properly according to the demand of the gauge function, thereby the gauge function can be found out more easily. Furthermore, since the choice of the coordination function has multiformity, much T more conserved quantity of Mei symmetry for holonomic mechanical system can be obtained.
基金the Young Personnel Innovation Foundation of Binzhou University under Grant No.BZXYQNLG200715the Experimentation and Technology Foundation of Binzhou University under Grant No.BZXYSYXM200702
文摘Based on the concept of adiabatic invariant, the perturbation to Mei symmetry and Noether adiabatic invariants for Birkhoffian systems are studied. The exact invariants of Mei symmetry for the system without perturbation are given. The perturbation to Mei symmetry is discussed and the Noether adiabatic invariants induced from the perturbation to Mei symmetry of the system are obtained.
文摘In this paper, a new type of conserved quantity indirectly deduced from the Mei symmetry for relativistic mechanical system in phase space is studied. The definition and the criterion of the Mei symmetry for the system are given. The condition for existence and the form of the new conserved quantity are obtained. Finally, an example is given to illustrate the application of the results.
文摘The Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are studied. The definition and criterion of the Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are given. The relationship between them is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained.An example is given to illustrate the application of the result.