期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于概念簇的多主题提取算法 被引量:3
1
作者 马甲林 张永军 王志坚 《智能系统学报》 CSCD 北大核心 2015年第2期261-266,共6页
现实世界存在着大量的多主题文本,多主题在信息检索、图书情报等领域有着广泛的应用。传统主题提取算法大多是针对文本整体提取一个主题,且存在缺乏语义信息、向量高维和稀疏等缺陷。以《知网》为知识库,构建概念向量表示文本,根据概念... 现实世界存在着大量的多主题文本,多主题在信息检索、图书情报等领域有着广泛的应用。传统主题提取算法大多是针对文本整体提取一个主题,且存在缺乏语义信息、向量高维和稀疏等缺陷。以《知网》为知识库,构建概念向量表示文本,根据概念的语义及上下文背景对同义词进行归并、对多义词进行排歧,并利用概念间语义关系实现语义相似度计算;在此基础上提出基于概念簇的多主题提取算法MEABCC,该算法通过对概念进行聚类,得到多个主题簇;在使用K-means算法进行概念聚类时,通过"预设种子"方法对其进行改进,以弥补传统K-means算法对初始中心的敏感性所引起的时空开销不稳定、结果波动较大的缺陷。实验结果表明,该算法具有较好的准确率、召回率和F1值。 展开更多
关键词 语义 稀疏 上下文背景 知识库 概念簇 多主题提取 K-MEANS meabcc
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部