The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of str...The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering.展开更多
在数学规划的领域里定义了互逆规划--各自目标函数与约束条件位置相互交换的一对规划.接着指出,尽管互逆规划与对偶规划在表面上似乎类似,但是二者存在5点不同:(1)是否为同一个问题的不同;(2)存在"对偶间隙"与否的不同;(3)设...在数学规划的领域里定义了互逆规划--各自目标函数与约束条件位置相互交换的一对规划.接着指出,尽管互逆规划与对偶规划在表面上似乎类似,但是二者存在5点不同:(1)是否为同一个问题的不同;(2)存在"对偶间隙"与否的不同;(3)设计变量数目的不同;(4)是否单目标与多目标问题的不同;(5)问题合理与否的不同.然后,基于互逆规划的定义,用以审视结构拓扑优化模型,给出如下结果:(1)从这个角度洞悉,在结构优化中,确实有不合理的模型一直被沿用着;(2)找到了修正不合理模型使之合理化的方法;(3)对于给定体积下的柔顺度最小化(MCVC)模型,指出了其不合理的原因;(4)MCVC模型实际是互逆规划的m方,由此建立起其对应的s方,即给出了多个柔顺度约束的体积最小化(MVCC)模型;(5)给出了MVCC模型中的结构柔顺度约束的物理解释和算法,论证了ICM(independent continuous and mapping)方法以往关于全局化应力约束的概念和方法;(6)数值算例表明了MCVC与MVCC模型作为互逆规划的差异,且印证了MVCC模型的合理性.MCVC模型在不同体积约束及多工况下不同的权系数时,得到最优拓扑不同;但MVCC模型在多工况柔顺度约束下可得到唯一的最优拓扑.展开更多
基金supported by the National Natural Science Foundation of China(Grant 11172013)
文摘The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering.
文摘在数学规划的领域里定义了互逆规划--各自目标函数与约束条件位置相互交换的一对规划.接着指出,尽管互逆规划与对偶规划在表面上似乎类似,但是二者存在5点不同:(1)是否为同一个问题的不同;(2)存在"对偶间隙"与否的不同;(3)设计变量数目的不同;(4)是否单目标与多目标问题的不同;(5)问题合理与否的不同.然后,基于互逆规划的定义,用以审视结构拓扑优化模型,给出如下结果:(1)从这个角度洞悉,在结构优化中,确实有不合理的模型一直被沿用着;(2)找到了修正不合理模型使之合理化的方法;(3)对于给定体积下的柔顺度最小化(MCVC)模型,指出了其不合理的原因;(4)MCVC模型实际是互逆规划的m方,由此建立起其对应的s方,即给出了多个柔顺度约束的体积最小化(MVCC)模型;(5)给出了MVCC模型中的结构柔顺度约束的物理解释和算法,论证了ICM(independent continuous and mapping)方法以往关于全局化应力约束的概念和方法;(6)数值算例表明了MCVC与MVCC模型作为互逆规划的差异,且印证了MVCC模型的合理性.MCVC模型在不同体积约束及多工况下不同的权系数时,得到最优拓扑不同;但MVCC模型在多工况柔顺度约束下可得到唯一的最优拓扑.