期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
膜计算多粒子群算法 被引量:10
1
作者 陈东宁 王跃颖 +2 位作者 姚成玉 刘一丹 吕世君 《机械工程学报》 EI CAS CSCD 北大核心 2019年第12期222-232,共11页
针对粒子群(Particle swam optimization, PSO)算法进化后期收敛速度较慢,易陷入局部极值点,精度较差等不足,提出膜计算多粒子群(MC-MPSO)算法。在该算法中,将原始PSO、标准PSO、中值导向粒子群(MPSO)、扩展粒子群(EPSO)、多作用力粒子... 针对粒子群(Particle swam optimization, PSO)算法进化后期收敛速度较慢,易陷入局部极值点,精度较差等不足,提出膜计算多粒子群(MC-MPSO)算法。在该算法中,将原始PSO、标准PSO、中值导向粒子群(MPSO)、扩展粒子群(EPSO)、多作用力粒子群(MFPSO)、两阶段作用力粒子群(TFPSO)等六种具有不同优点的粒子群算法分别放入六个基本膜内,提出MC-MPSO算法的膜间交流与粒子更新机制,在进化前期,各粒子群算法按自身机制进行搜索寻优,即各基本膜各自进化来充分发挥各基本膜内算法的优点;在进化后期,各基本膜内算法与比自身更好的表层膜内最优解粒子交流,各表层膜逐步吞并搜索能力较差的基本膜,而最适合问题优化求解的基本膜长大并按照表层膜输出,使MC-MPSO算法集成了基本膜内六种粒子群算法的各自优势,并具有适应不同类型优化求解问题的寻优能力。通过与基本膜内六种粒子群算法的测试对比,与遗传算法、鱼群算法及其他基于膜计算的粒子群算法的比较,证明了MC-MPSO算法具有更好的寻优能力和适用性。最后,将MC-MPSO算法应用于串联和桥式系统可靠性优化问题,验证了所提算法的有效性。 展开更多
关键词 粒子群算法 膜计算 mc-mpso算法 可靠性优化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部