Numerous studies on eutrophication remediation have mainly focused on purifying water first, then restoring submerged macrophytes. A restoration-promoting integrated floating bed (RPIFB) was designed to combine the ...Numerous studies on eutrophication remediation have mainly focused on purifying water first, then restoring submerged macrophytes. A restoration-promoting integrated floating bed (RPIFB) was designed to combine the processes of water purification and macrophyte restoration simultaneously. Two outdoor experiments were conducted to evaluate the ecological functions of the RP1FB. Trial 1 was conducted to compare the eutrophication purification among floating bed, gradual-submerging bed (GSB) and RPIFB technologies. The results illustrated that RPIFB has the best purification capacity. Removal efficiencies of RPIFB for TN, TP,NH4+-N, NO3-N, CODcr, Chlorophyll-a and turbidity were 74.45%, 98.31%, 74.71%, 88.81%, 71.42%, 90.17% and 85%, respectively. In trial 2, influences of depth of GSB and photic area in RPIFB on biota were investigated. When the depth of GSB decreased and the photic area of RPIFB grew, the height of Potamogeton crispus Linn. increased, but the biomass of Canna indica Linn. was reduced. The mortalities of Misgurnus anguillicaudatus and Bellamya aeruginosa in each group were all less than 7%. All results indicated that when the RPIFB was embedded into the eutrophic water, the regime shift from phytoplankton-dominated to macrophyte-dominated state could be promoted. Thus, the RPIFB is a promising remediation technology for eutrophication and submerged macrophyte restoration.展开更多
A sequential extraction method for the fractionation of phosphorus (P) in lake sediments was used to analyze phos- phorus fractions of sediments taken from three large, shallow. eutrophic freshwater lakes of China-T...A sequential extraction method for the fractionation of phosphorus (P) in lake sediments was used to analyze phos- phorus fractions of sediments taken from three large, shallow. eutrophic freshwater lakes of China-Talhu Lake. Chaohu Lake, and Long.an Lake. All three lakes are located in the lower reaches of the Changjiang River (Yangtze River). In Taihu Lake and Chaohu Lake, algae blooms occurred every year, while Longgan Lake was a macrophyte-dominated lake. Results showed that exchangeable phosphorus fractions were much higher in the eutrophic lake sediments than in the macrophyte-flourishing lake sediment. Also, the ratio of Fe:P in the sediments of the algae-predomlnant lakes was generally much lower than that in the macrophyte-predominant lakes. Thus, the geochemical fractions of phosphorus in sediments had a closer relationship with the type of aquatic vegetation.展开更多
基金supported by the National Natural Science Foundation of China(No.41271332the Natural Science Foundation of Hunan Province,China(No.11JJ2031)
文摘Numerous studies on eutrophication remediation have mainly focused on purifying water first, then restoring submerged macrophytes. A restoration-promoting integrated floating bed (RPIFB) was designed to combine the processes of water purification and macrophyte restoration simultaneously. Two outdoor experiments were conducted to evaluate the ecological functions of the RP1FB. Trial 1 was conducted to compare the eutrophication purification among floating bed, gradual-submerging bed (GSB) and RPIFB technologies. The results illustrated that RPIFB has the best purification capacity. Removal efficiencies of RPIFB for TN, TP,NH4+-N, NO3-N, CODcr, Chlorophyll-a and turbidity were 74.45%, 98.31%, 74.71%, 88.81%, 71.42%, 90.17% and 85%, respectively. In trial 2, influences of depth of GSB and photic area in RPIFB on biota were investigated. When the depth of GSB decreased and the photic area of RPIFB grew, the height of Potamogeton crispus Linn. increased, but the biomass of Canna indica Linn. was reduced. The mortalities of Misgurnus anguillicaudatus and Bellamya aeruginosa in each group were all less than 7%. All results indicated that when the RPIFB was embedded into the eutrophic water, the regime shift from phytoplankton-dominated to macrophyte-dominated state could be promoted. Thus, the RPIFB is a promising remediation technology for eutrophication and submerged macrophyte restoration.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-SW-12)
文摘A sequential extraction method for the fractionation of phosphorus (P) in lake sediments was used to analyze phos- phorus fractions of sediments taken from three large, shallow. eutrophic freshwater lakes of China-Talhu Lake. Chaohu Lake, and Long.an Lake. All three lakes are located in the lower reaches of the Changjiang River (Yangtze River). In Taihu Lake and Chaohu Lake, algae blooms occurred every year, while Longgan Lake was a macrophyte-dominated lake. Results showed that exchangeable phosphorus fractions were much higher in the eutrophic lake sediments than in the macrophyte-flourishing lake sediment. Also, the ratio of Fe:P in the sediments of the algae-predomlnant lakes was generally much lower than that in the macrophyte-predominant lakes. Thus, the geochemical fractions of phosphorus in sediments had a closer relationship with the type of aquatic vegetation.