At 06:34(CST)on Nov.18,2017,an M6.9 earthquake occurred in the Mainling County,Nyingchi Region of Xizang Autonomous Region,China.The epicenter is located at 95.02°E,29.75°N and the focal depth is about 10 km...At 06:34(CST)on Nov.18,2017,an M6.9 earthquake occurred in the Mainling County,Nyingchi Region of Xizang Autonomous Region,China.The epicenter is located at 95.02°E,29.75°N and the focal depth is about 10 km(Figure 1).The epicenter is about 100 km from the Mainling County.The average elevation within 5 km is about 3100 m.This earthquake has caused widespread concern among members of government,research institutions,and public media.展开更多
We report an external cavity quantum cascade laser (EC-QCL) operating near 6.9μm using the Littman Metcalf configuration. The EC-QCL works in a pulsed mode and can be tuned continuously from 1340 to 1640cm^-1 by on...We report an external cavity quantum cascade laser (EC-QCL) operating near 6.9μm using the Littman Metcalf configuration. The EC-QCL works in a pulsed mode and can be tuned continuously from 1340 to 1640cm^-1 by only tilting the tuning mirror. The fine tuning ability of the EC-QCL is demonstrated by measuring the absorption spectrum of water in the ambient air with a lock-in amplifier.展开更多
The 2010 Mw 6.9 Yushu earthquake produced a ~33-km-long co-seismic surface rupture zone along the pre-existing active Yushu Fault on China’s central Tibetan Plateau. Sand boils occurred along the tension cracks of th...The 2010 Mw 6.9 Yushu earthquake produced a ~33-km-long co-seismic surface rupture zone along the pre-existing active Yushu Fault on China’s central Tibetan Plateau. Sand boils occurred along the tension cracks of the co-seismic surface rupture zone, and locally spouted up above the ground to coat the top of limestone blocks that had slid down from an adjacent ~300-m-high mountain slope. Based on our observations, the relations between the arrival times of P- and S-waves at the sand-boil location and the seismic rupture velocity, we conclude that 1) the sand boils occurred at least 18.24 s after the main shock;2) it took at least 4.09 - 9.79 s after the formation of co-seismic surface rupture to generate liquefaction at the sand-boil location;3) the spouting height of sand boils was at least 65 cm. Our findings help to clarify the relationships between the timing of lique-faction and the spouting height of sand boils during a large-magnitude earthquake.展开更多
基金The National Natural Science Foundation of China (Grants 41774069 and 41274062) sponsored this study
文摘At 06:34(CST)on Nov.18,2017,an M6.9 earthquake occurred in the Mainling County,Nyingchi Region of Xizang Autonomous Region,China.The epicenter is located at 95.02°E,29.75°N and the focal depth is about 10 km(Figure 1).The epicenter is about 100 km from the Mainling County.The average elevation within 5 km is about 3100 m.This earthquake has caused widespread concern among members of government,research institutions,and public media.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174098 and 11574107the SelfDetermined Research Funds of Central China Normal University under Grant No CCNU15A02034
文摘We report an external cavity quantum cascade laser (EC-QCL) operating near 6.9μm using the Littman Metcalf configuration. The EC-QCL works in a pulsed mode and can be tuned continuously from 1340 to 1640cm^-1 by only tilting the tuning mirror. The fine tuning ability of the EC-QCL is demonstrated by measuring the absorption spectrum of water in the ambient air with a lock-in amplifier.
文摘The 2010 Mw 6.9 Yushu earthquake produced a ~33-km-long co-seismic surface rupture zone along the pre-existing active Yushu Fault on China’s central Tibetan Plateau. Sand boils occurred along the tension cracks of the co-seismic surface rupture zone, and locally spouted up above the ground to coat the top of limestone blocks that had slid down from an adjacent ~300-m-high mountain slope. Based on our observations, the relations between the arrival times of P- and S-waves at the sand-boil location and the seismic rupture velocity, we conclude that 1) the sand boils occurred at least 18.24 s after the main shock;2) it took at least 4.09 - 9.79 s after the formation of co-seismic surface rupture to generate liquefaction at the sand-boil location;3) the spouting height of sand boils was at least 65 cm. Our findings help to clarify the relationships between the timing of lique-faction and the spouting height of sand boils during a large-magnitude earthquake.