Influenza A virus is the major cause of seasonal or pandemic flu worldwide. Two main treatment strategies vaccination and small molecule anti-influenza drugs are currently available. As an effective vaccine usually ta...Influenza A virus is the major cause of seasonal or pandemic flu worldwide. Two main treatment strategies vaccination and small molecule anti-influenza drugs are currently available. As an effective vaccine usually takes at least 6 months to develop, anti-influenza small molecule drugs are more effective for the first line of protection against the virus during an epidemic outbreak, especially in the early stage. Two major classes of anti-influenza drugs currently available are admantane-based M2 protein Mockers (amantadine and rimantadine) and neuraminidase (NA) inhibitors (oseltamivir, zanamivir, and peramivir). However, the continuous evolvement of influenza A virus and the rapid emergence of resistance to current drugs, particularly to amantadine, rimantadine, and oseltamivir, have raised an urgent need for developing new anti -influenza drugs against resistant forms of influenza A virus. In this review, we first give a brief introduction of the molecular mechanisms behind resistance, and then discuss new strategies in small-molecule drug development to overcome influenza A virus resistance targeting mutant M2 proteins and neuraminidases, and other viral proteins not associated with current drugs. (c) 2015 Chinese Pharmaceutical Association and Institute of Materia Medics, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.展开更多
TRPV4 activity modulates cell activities including receptor trafficking and transcriptional or translational regulations. We tested its CRISPR/Cas9 scissor efficacy in HepG2 (HEK293) cell noticed that it worked well i...TRPV4 activity modulates cell activities including receptor trafficking and transcriptional or translational regulations. We tested its CRISPR/Cas9 scissor efficacy in HepG2 (HEK293) cell noticed that it worked well in both cell lines to eliminate TRPV4 genome sequences. To confirm TRPV4 functions in the cell morphology maintenance and cell growth (beyond Ca2+ channel), we compared its wound healing, cell surface area, survival property and soft agar growth ability after deletion of TRPV4 gene in the cells with its CRISPR/Cas9 system. With these experiments, we confirmed that TRPV4 is required not only to function as Ca2+ channel but also to maintain its proper cell morphology as a corner stone protein on the cell adhesion junction.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (Kaiyan Lou)East China University of Science and Technology (start-up funds to Wei Wang)
文摘Influenza A virus is the major cause of seasonal or pandemic flu worldwide. Two main treatment strategies vaccination and small molecule anti-influenza drugs are currently available. As an effective vaccine usually takes at least 6 months to develop, anti-influenza small molecule drugs are more effective for the first line of protection against the virus during an epidemic outbreak, especially in the early stage. Two major classes of anti-influenza drugs currently available are admantane-based M2 protein Mockers (amantadine and rimantadine) and neuraminidase (NA) inhibitors (oseltamivir, zanamivir, and peramivir). However, the continuous evolvement of influenza A virus and the rapid emergence of resistance to current drugs, particularly to amantadine, rimantadine, and oseltamivir, have raised an urgent need for developing new anti -influenza drugs against resistant forms of influenza A virus. In this review, we first give a brief introduction of the molecular mechanisms behind resistance, and then discuss new strategies in small-molecule drug development to overcome influenza A virus resistance targeting mutant M2 proteins and neuraminidases, and other viral proteins not associated with current drugs. (c) 2015 Chinese Pharmaceutical Association and Institute of Materia Medics, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
文摘TRPV4 activity modulates cell activities including receptor trafficking and transcriptional or translational regulations. We tested its CRISPR/Cas9 scissor efficacy in HepG2 (HEK293) cell noticed that it worked well in both cell lines to eliminate TRPV4 genome sequences. To confirm TRPV4 functions in the cell morphology maintenance and cell growth (beyond Ca2+ channel), we compared its wound healing, cell surface area, survival property and soft agar growth ability after deletion of TRPV4 gene in the cells with its CRISPR/Cas9 system. With these experiments, we confirmed that TRPV4 is required not only to function as Ca2+ channel but also to maintain its proper cell morphology as a corner stone protein on the cell adhesion junction.