To study bistatic scattering from a target at low altitude above two- dimensional (2D) randomly rough sea surface under an electromagnetic (EM) wave incidence at low grazing angle (LGA), a numerical approach of the fi...To study bistatic scattering from a target at low altitude above two- dimensional (2D) randomly rough sea surface under an electromagnetic (EM) wave incidence at low grazing angle (LGA), a numerical approach of the finite element method (FEM) is developed. The conformal perfectly matched layer (PML), as the truncation boundary of the FEM, is employed to reduce the reflection error of planar PML in conventional FEM. Numerical code of our FEM is examined by available solution of the forward backward iterative (FBM) method. Bistatic and back-scattering from composite model of a target above random rough sea surface generated by Monte Carlo realization, and functional dependence upon the sea surface wind speed, target altitude, incident and scattering angles, etc. are numerically simulated and discussed. This paper presents a numerical description of the observation principle and physical insight associated with the coupling interactions of a complex volumetric target and random rough sea surface.展开更多
In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best av...In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best available ABC. However, the traditional splitting PML (SPML) ABC has some serious disadvantages: for example, global SPML ABCs require much more computing memory, although the implementation is easy. The implementation of local SPML ABCs also has some difficulties, since edges and corners must be considered. The traditional non-splitting perfectly matched layer (NPML) ABC has complex computation because of the convolution. In this paper, based on non-splitting perfectly matched layer (NPML) ABCs combined with the complex frequency-shifted stretching function (CFS), we introduce a novel numerical implementation method for PML absorbing boundary conditions with simple calculation equations, small memory requirement, and easy programming.展开更多
The PML gene is involved in the t(15;17) translocation of acute promyelocytic leukaemia (APL), which generates the oncogenic fusion protein PML (promyelocytic leukaemia protein)-retinoic acid receptor alpha. The...The PML gene is involved in the t(15;17) translocation of acute promyelocytic leukaemia (APL), which generates the oncogenic fusion protein PML (promyelocytic leukaemia protein)-retinoic acid receptor alpha. The PML protein localises to a subnuclear structure called the PML nuclear domain (PML-ND), of which PML is the essential structural component. In APL, PML-NDs are disrupted, thus implicating these structures in the pathogenesis of this leukaemia. Unexpectedly, recent studies indicate that PML and the PML-ND play a tumour suppressive role in several different types of human neoplasms in addition to APL. Because of PML's extreme versatility and involvement in multiple cellular pathways, understanding the mechanisms underlying its function, and therefore role in tumour suppression, has been a challenging task. In this review, we attempt to critically appraise the more recent advances in this field and propose new avenues of investigation.展开更多
波动方程有限差分数值模拟是研究地震波在地下介质中的波场特征和传播机理的重要手段。对于常规有限差分技术,当采用大网格对计算空间进行差分离散时会出现严重的数值频散问题,降低了计算精度。通量校正(Flux-corrected transport metho...波动方程有限差分数值模拟是研究地震波在地下介质中的波场特征和传播机理的重要手段。对于常规有限差分技术,当采用大网格对计算空间进行差分离散时会出现严重的数值频散问题,降低了计算精度。通量校正(Flux-corrected transport method,FCT)技术能够有效压制粗网格情况下有限差分的数值频散。本文研究了具有垂直对称轴横向各向同性(Vertical Transverse Isotropy,VTI)介质的交错网格FCT有限差分技术。首先从一阶速度—应力弹性波方程出发,在交错网格空间中给出了该方程的高阶有限差分法格式及稳定性条件,在此基础上研究了波动方程正演过程中的数值频散FCT压制技术,二者结合实现了该方程的高精度有限差分数值模拟。同常规算法相比,本文算法不额外增加内存需求,少量增加计算量,但可有效压制VTI介质中弹性波动方程正演的数值频散现象。当采用大网格进行数值模拟时,本文方法明显提高了波场模拟精度。展开更多
基金the China State Key Basic Research Project (Grant No. 2001CB309401-05)the National Natural Science Foundation of China (Grant No. 60171009).
文摘To study bistatic scattering from a target at low altitude above two- dimensional (2D) randomly rough sea surface under an electromagnetic (EM) wave incidence at low grazing angle (LGA), a numerical approach of the finite element method (FEM) is developed. The conformal perfectly matched layer (PML), as the truncation boundary of the FEM, is employed to reduce the reflection error of planar PML in conventional FEM. Numerical code of our FEM is examined by available solution of the forward backward iterative (FBM) method. Bistatic and back-scattering from composite model of a target above random rough sea surface generated by Monte Carlo realization, and functional dependence upon the sea surface wind speed, target altitude, incident and scattering angles, etc. are numerically simulated and discussed. This paper presents a numerical description of the observation principle and physical insight associated with the coupling interactions of a complex volumetric target and random rough sea surface.
基金sponsored by the Chinese National Development and Reform Commission(No.[2005]2372)the Innovative Technological Research Foundation of PetroChina Company Limited(No.060511-1-3)
文摘In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best available ABC. However, the traditional splitting PML (SPML) ABC has some serious disadvantages: for example, global SPML ABCs require much more computing memory, although the implementation is easy. The implementation of local SPML ABCs also has some difficulties, since edges and corners must be considered. The traditional non-splitting perfectly matched layer (NPML) ABC has complex computation because of the convolution. In this paper, based on non-splitting perfectly matched layer (NPML) ABCs combined with the complex frequency-shifted stretching function (CFS), we introduce a novel numerical implementation method for PML absorbing boundary conditions with simple calculation equations, small memory requirement, and easy programming.
文摘The PML gene is involved in the t(15;17) translocation of acute promyelocytic leukaemia (APL), which generates the oncogenic fusion protein PML (promyelocytic leukaemia protein)-retinoic acid receptor alpha. The PML protein localises to a subnuclear structure called the PML nuclear domain (PML-ND), of which PML is the essential structural component. In APL, PML-NDs are disrupted, thus implicating these structures in the pathogenesis of this leukaemia. Unexpectedly, recent studies indicate that PML and the PML-ND play a tumour suppressive role in several different types of human neoplasms in addition to APL. Because of PML's extreme versatility and involvement in multiple cellular pathways, understanding the mechanisms underlying its function, and therefore role in tumour suppression, has been a challenging task. In this review, we attempt to critically appraise the more recent advances in this field and propose new avenues of investigation.
文摘波动方程有限差分数值模拟是研究地震波在地下介质中的波场特征和传播机理的重要手段。对于常规有限差分技术,当采用大网格对计算空间进行差分离散时会出现严重的数值频散问题,降低了计算精度。通量校正(Flux-corrected transport method,FCT)技术能够有效压制粗网格情况下有限差分的数值频散。本文研究了具有垂直对称轴横向各向同性(Vertical Transverse Isotropy,VTI)介质的交错网格FCT有限差分技术。首先从一阶速度—应力弹性波方程出发,在交错网格空间中给出了该方程的高阶有限差分法格式及稳定性条件,在此基础上研究了波动方程正演过程中的数值频散FCT压制技术,二者结合实现了该方程的高精度有限差分数值模拟。同常规算法相比,本文算法不额外增加内存需求,少量增加计算量,但可有效压制VTI介质中弹性波动方程正演的数值频散现象。当采用大网格进行数值模拟时,本文方法明显提高了波场模拟精度。